期刊文献+

不可定向曲面上的最大亏格嵌入和最小亏格嵌入

Maximum Genus Embeddings and Minimum Genus Embeddings in Non-orientable Surfaces
原文传递
导出
摘要 研究了不可定向曲面上最大亏格嵌入的估计数,得到了几类图的指数级不可定向最大亏格嵌入的估计数的下界.利用电流图理论,证明了完全图K_(12s)在不可定向曲面上至少有2^(3s-1)个最小亏格嵌入;完全图K_(12s+3)在不可定向曲面上至少有2^(2s)个最小亏格嵌入;完全图K_(12s+7)在不可定向曲面上至少有2^(2s+1)个最小亏格嵌入. In this paper,the estimation of the number of maximum genus non-orientable embeddings of graphs is studied,and an exponential lower bound for such number is found.Applying the theory of current graph,K_(12s) has at least 2^(3s-2) distinct minimum genus embedding in non-orientable surfaces;K_(12s+3) has at least 2^(2s) distinct minimum genus embedding in non-orientable surfaces;K_(12s+7) has at least 2^(2s+1) distinct minimum genus embedding in non-orientable surfaces.
作者 李赵祥 任韩
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第2期329-332,共4页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助(10771225) 中央民族大学自主科研项目资助
关键词 亏格嵌入 完全图 电流图 genus embedding complete graph current graph
  • 相关文献

参考文献1

二级参考文献17

  • 1Liu Y P.Map color theorem and graph embeddings. Math Practice Theory . 1981–1982
  • 2Lawrencenko S.The irreducible triangulations of the torus. Ukrain Geom SB . 1987
  • 3Korzhik V,Voss H-J.On the number nonisomorphic orientable regular embeddings of complete graphs. J Combin Theorey Ser B . 2001
  • 4Bondy J A,Murty U S R.Graph Theory with Application. . 1979
  • 5Nebesky L.A New Characterization of the Maximum Genus of a Graph,. J.Czech.Math . 1981
  • 6Huang Y Q.On the maximum genus of graphs. . 1996
  • 7Xuong N H.How to Determine the Maximum Genus of a Graph. Journal of Combinatorial Theory . 1979
  • 8Korzhik V,Voss H-J.Exponential families of nonisomorphic nontriangular orientble genus embeddings of complete graphs. J Combin Theory Set B . 2002
  • 9WHITNEY H.2-isomorphic graphs. American Journal of Mathematics . 1933
  • 10Ringel G.Map Color Theorem. . 1974

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部