摘要
研究了不可定向曲面上最大亏格嵌入的估计数,得到了几类图的指数级不可定向最大亏格嵌入的估计数的下界.利用电流图理论,证明了完全图K_(12s)在不可定向曲面上至少有2^(3s-1)个最小亏格嵌入;完全图K_(12s+3)在不可定向曲面上至少有2^(2s)个最小亏格嵌入;完全图K_(12s+7)在不可定向曲面上至少有2^(2s+1)个最小亏格嵌入.
In this paper,the estimation of the number of maximum genus non-orientable embeddings of graphs is studied,and an exponential lower bound for such number is found.Applying the theory of current graph,K_(12s) has at least 2^(3s-2) distinct minimum genus embedding in non-orientable surfaces;K_(12s+3) has at least 2^(2s) distinct minimum genus embedding in non-orientable surfaces;K_(12s+7) has at least 2^(2s+1) distinct minimum genus embedding in non-orientable surfaces.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2011年第2期329-332,共4页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助(10771225)
中央民族大学自主科研项目资助
关键词
亏格嵌入
完全图
电流图
genus embedding
complete graph
current graph