期刊文献+

斗轮轮体双向结构渐进优化 被引量:1

Structural Optimization of the Wheel of Bucket Wheel Stacker Reclaimer Based on the Bi-direction Evolutionary Structure Topology Method
原文传递
导出
摘要 采用双向结构渐进优化方法(BESO)研究斗轮轮体结构优化问题,获得了较清晰的结果。斗轮轮体为典型的循环对称结构,其几何特征导致其无法划分为均匀一致的网格,造成单元灵敏度与单元体积直接相关,优化结果具有体积依赖性,无法获得正确的结果。针对这一情况,并以单元灵敏度密度为依据进行双向结构渐进优化,在其中采用灵敏度密度过滤方法抑制棋盘格的产生,使用EPCM方法实现单元增删。结果表明,该方法在工程实际上有很大的灵活性和实用性。 The BESO (Bindireetion Evolutionary Structure Optimization) method is used to study the optimization of the wheel of bucket wheel stacker reclaimer in this paper, a clear result is obtained . The wheel is a typical cyclic - symmetry structure ,which can1 be divide into uniform finite element discretization . As a result ,the sensitivity result depends on the volume of the concerned finite element ,the final topology result is of element - volume - dependence , the correct topology result cant be obtained . For this reason ,the topology optimization of this paper bases on the element sensitivity density ,in which a sensitivity density filtering technique is used to control the checkerboard. , and the EPCM (Elements Proparties Changing Method) is used to add or remove elements . The result indicates that the method is with great flexibility and adaptability in actual project.
出处 《机械设计与研究》 CSCD 北大核心 2011年第1期91-93,98,共4页 Machine Design And Research
关键词 拓扑优化 棋盘格 灵敏度密度:循环对称结构 topology optimization checkerboard sensitivity density cyclic - symmetry structure
  • 相关文献

参考文献7

  • 1Y M Xie,G P Steven.A simple Evolutionary procedure for Structural optimization[J].Computers & structures,1993,49(5):885-896.
  • 2Y M Xie,G P Steven.Optimal design of multiple load case structures using an evolutionary procedure[J].Engineering conputations,1993,11(4):295-302.
  • 3V B Young,Bi-directional evolutionary structural optimization(BESO):2-D and 3-D[D].Undergraduate Honours Thesis,Aeronautical Engineering,University of Sydney,1997.
  • 4郭中泽,陈裕泽,张卫红,梅军.基于单元材料属性更改的结构渐进拓扑优化方法[J].机械科学与技术,2006,25(8):928-931. 被引量:23
  • 5Sigmund O,Petersson J.Numerical instabilities in topology optimization:asurvey on procedures dealing with checkerboards,mesh-dependencies and local minima[J].Struct Optim,1998,16:68-75.
  • 6Huang X,Xie YM.Convergent and mesh-independent solutions for the bi-direction evolutionary structural optimization method.Finite Elem Anal Des[J],2007,43(14):1039-1049.
  • 7高彤,张卫红,朱继宏,汤兴刚.循环对称结构静力学渐进拓扑优化设计[J].机械工程学报,2008,44(3):166-172. 被引量:10

二级参考文献26

  • 1荣见华,姜节胜,颜东煌,赵爱琼.基于人工材料的结构拓扑渐进优化设计[J].工程力学,2004,21(5):64-71. 被引量:36
  • 2Bendsoe M P,Kikuchi N.Generating optimal topologies in structural design using homogenization[J].Comp.Meth.Appl.Mech.Engrg,1988,71:197~224
  • 3Mlejnek H P,Schirrmascher R.An engineer's approach to optimal to material distribution and shape finding[J].Comput.Method Appl.Mech.Engrg.,1993,106
  • 4Xie Y M,Steven G P.Evolutionary Structural Optimization[M].Berlin,Heidelberg,New York:Springer,1997
  • 5Xie Y M,Steven G P.A simple evolutionary procedure for structure optimization[J].Comp.Struct.,1993,49:885~896
  • 6Xie Y M,Steven G P.Optimal design of multiple load case structures using an evolutionary procedure[J].Engng.Comp.,1994,(11):295~302
  • 7Xie Y M,Steven G P.A simple approach to structure frequency optimization[J].Comp.Struct.,1994,53
  • 8Rong J H,Xie Y M.An improved method for evolutionary structure optimization against buckling[J].Comp.Struct.,2001,79:253~263
  • 9Hinton E,Sienz J.Fully stressed topological design of structures using an evolutionary procedure[J].Engineering Computations:Int.J for Computer-Aided Engineering,1995,12(3)
  • 10Li Q,Steven G P.A simple checkerboard suppression algorithm for evolutionary structure optimization[J].Struct.Optim.,2001,22:230~239

共引文献31

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部