期刊文献+

基于BWAS的无线传感器网络动态分簇路由算法 被引量:4

Dynamic Clustering Routing Algorithm Based on Best-Worst Ant System for Wireless Sensor Networks
下载PDF
导出
摘要 为加快无线传感器网络路径搜索速度,减少了路径寻优能量消耗,提出了基于最优-最差蚂蚁系统(bestworst out system,简称BWAS)算法的无线传感器网络动态分簇路由算法。该算法是基于无线传感器网络动态分簇能量管理模式,在簇头节点间运用BWAS算法搜寻从簇头节点到汇聚节点的多跳最优路径,以多跳接力方式将数据发送至汇聚节点。BWAS算法在路径搜寻过程中评价出最优最差蚂蚁,引入奖惩机制,加强搜寻过程的指导性。结合动态分簇能量管理,避免网络连续过度使用某个节点,均衡了网络节点能量消耗。通过与基于蚂群算法(ACS)的路由算法仿真比较,本算法减缓了网络节点的能量消耗,延长了网络寿命,在相同时间里具有较少的死亡节点,具有较强的鲁棒性。 In order to speed up the path searching and cut the energy consumption,a new best-worst ant system(BWAS)-based dynamic clustering routing algorithm for wireless sensor networks are presented in this paper.The optimal multi-hop path from cluster-head nodes to sink node was found while the dynamic clustering models were used for energy management in wireless sensor networks.It transmits the data to the sink node along this path.The ant colony algorithm was improved by evaluating the best and worst ants during the path searching process and the reward-punishment mechanism was introduced to guide the search,which avoid overusing a certain gate node and balance the energy consumption in the network with the dynamic clustering models.Compared with the ACS routing algorithm,the BWAS algorithm alleviates the energy consumption of the nodes and extends the service life of wireless sensor networks.It has less dead nodes during the same time and has good robustness.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2011年第1期104-109,132,共6页 Journal of Vibration,Measurement & Diagnosis
基金 重庆市自然科学基金重点项目资助(编号:CSTC2007BA2023)
关键词 无线传感器网络 路由协议 动态分簇 最优-最差蚂蚁系统(BWAS)算法 wireless sensor networks routing dynamic clustering BWAS algorithm
  • 相关文献

参考文献9

二级参考文献54

共引文献109

同被引文献40

  • 1胡小兵,黄席樾.对一类带聚类特征TSP问题的蚁群算法求解[J].系统仿真学报,2004,16(12):2683-2686. 被引量:22
  • 2Lukachan, George, Labrador, Miguel A, Moreno, Wilfrido. Scalable and energy-efficient routing for large-scale wireless sensor networks [ C ]//Proceedings of the Sixth International Caribbean Conference on Devices ,Circuits and Systems( ICCDCS 2006) ,2006:267 - 272.
  • 3Tabibzadeh M, Sarram M, Adibnia F. Hybrid routing protocol for prolonged network lifetime in large scale wireless sensor network [ C ]// Proceedings of 2009 International Conference on Information and Multimedia Technology ( ICIMT 2009) ,2009 : 179 - 183.
  • 4Houngbadji, Therence, Pierre, Samuel. QoSNET: An integrated QoS network for routing protocols in large scale wireless sensor networks [ J]. Computer Communications,2010, 33(11) :1334-1342.
  • 5Goyal M, Xie W, Hosseini H, et al. AntSens : An Ant Routing protocol for large scale wireless sensor networks [ C ]// Proceedings of 2010 International Conference on Broadband, Wireless Computing Communication and Applications (BWCCA 2010) ,2010:41 -48.
  • 6Marco Dorigo. Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem [ J ]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1997(4) :53 -66.
  • 7Marco Dorigo. Ant Colony Optimization[J]. IEEE COMPU-TATIONAL INTELLIGENCE MAGAZINE, 2006 ( 12 ) : 28 -39.
  • 8Song N,Kwak B,Song J,et al.Enhancement of IEEEdistributed coordination function with exponential in-crease exponential decrease backoff algorithm[C]∥IEEE Vehicular Technology Conference.Korea:IEEEPress,2003:2775-2778.
  • 9Deng Jing,Varshney P K,Haas Z J.A new backoff al-gorithm for the IEEE distributed coordination function[C]∥Proceedings of the Communication Networksand Distributed Systems.Paris:Inderscience Enter-prises Ltd,2004:215-225.
  • 10Priya S, Taneja R, Myers R, et al. , Piezoelectric and acoustic materials for transducer applications [M]. New York : Springer Science, 2008: 373-388.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部