期刊文献+

离散模糊时滞双线性系统的非脆弱控制

Non-fragile control of discrete-time fuzzy bilinear system with time delay
原文传递
导出
摘要 研究了一类输入和状态都带有时滞的离散模糊双线性系统的非脆弱控制问题.在控制器存在加性摄动的情况下,通过并行分布补偿算法导出了非脆弱控制律的存在条件,使得闭环系统是渐近稳定的.利用线性矩阵不等式,提出了非脆弱模糊控制器的设计方法.数值仿真验证了所提方法的有效性. The non-fragile control problem for a class of fuzzy bilinear systems with delay in both state and input was discussed.The objective was to design non-fragile state feedback controllers via the parallel distributed compensation(PDC) approach such that the closed-loop system was asymptotically stable.Some sufficient conditions for the existence of such non-fragile controllers were derived via the linear matrix inequality(LMI) approach and the design problem of the fuzzy controller was formulated as an LMI problem.The simulation example shows that the proposed approach was effective.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期123-126,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2008AA040208)
关键词 模糊控制系统 双线性系统 非脆弱控制 并行分布补偿算法 线性矩阵不等式 fuzzy control system bilinear system non-fragile control parallel distributed compensation (PDC) linear matrix inequality (LMI)
  • 相关文献

参考文献10

  • 1Keel H L, Bhattacharryya S P. Robust, fragile, or optimal[J]. IEEE Trans Automatic Cont, 1997, 42 (8): 1098-1105.
  • 2Zhang Baoyong, Zhou Shaosheng, Li Tao. A new approach to robust and non-fragile H∞ control for un- certain fuzzy systems [J] Information Sciences, 2007, 177: 5118-5133.
  • 3Chen M, Feng G, Ma H, et al. Delay-dependent H∞ filter design for discrete-time fuzzy systems with time-varying delays[J]. IEEE Trans Fuzzy Systems, 2009, 17(3): 604-616.
  • 4Zhang J, Xia Y, Tao R. New results on H∞ filtering for fuzzy time-delay systems[J]. IEEE Trans Fuzzy Systems, 2009, 17(1): 128-137.
  • 5LiT H S, Tsai S H. T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear sys- tems[J]. IEEETransFuzzySyst, 2007, 3(15): 494- 505.
  • 6Tsai S H, Li T H S. Robust fuzzy control of a class fuzzy bilinear systems with time-delay[J]. Chaos, Solitons and Fraetal, 2009, 39(5): 2028-2040.
  • 7Li T H S, Tsai S H, et al. Robust H∞, fuzzy control for a class of uncertain discrete fuzzy bilinear systems[J]. IEEE Trans Syst Man Cybe, 2008, 38(2) : 510- 526.
  • 8郭岗,牛文生,崔西宁.时滞模糊系统的鲁棒非脆弱H_∞控制[J].华中科技大学学报(自然科学版),2009,37(12):68-71. 被引量:8
  • 9Wang R J, Lin Weiwei, Wang W J. Stabilizability of linear quadratic state feedback for uncertain fuzzy- time delay systems[J]. IEEE Trans Sys Man Cybe, 2004, 34(2): 1288-1292.
  • 10Daniel W C H, Niu Y. Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control[J]. IEEE Trans Fuzzy Syst, 2007, 15(3):350-358.

二级参考文献10

  • 1郑科,俞立,张贵军.基于T-S模型的非线性系统非脆弱保性能模糊控制[J].系统工程与电子技术,2006,28(4):577-581. 被引量:2
  • 2Pang C T, Lur Y Y. On the stability of takagi-sugeno fuzzy systems with time-varying uncertainties [J]. IEEE Trans Fuzzy Syst, 2008, 16(1): 162-170.
  • 3Gao J H, Liu X, Lam J. Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay[J]. IEEE Trans Syst Man and Cybe, 2009, 39(2): 306- 316.
  • 4Yuan K, Li H X, Cao J. Robust stabilization of the distributed parameter system with time delay via fuzzy control[J]. IEEE Trans Fuzzy Syst, 2008, 16(3): 567-584.
  • 5Keel L H, Bhattacharyya S P. Robust fragile or optimal[J]. IEEE Trans Auto Cont, 1997, 42(8): 1 098-1 105.
  • 6Liu G Y, Zhang Q L, Zhai D. Non-fragile H-infinite control for T-S fuzzy systems via LMI[C]//ICCA 2005, 6: 27-29.
  • 7Zhang B Y, Zhou S S, Li T. A new approach to robust and non-fragile H-infinte control uncertain fuzzy systems[J]. Information Scie, 2007:5 118-5 133.
  • 8Li X, Souza C E. Delayed-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach [J]. IEEE Trans Auto Cont, 1997, 42:1 144-1 148.
  • 9Cao Y Y, Frank P M. Robust H disturbance attenuation for a class of uncertain discrete-time fuzzy systems[J]. IEEE Trans Fuzzy Syst, 2000, 8(4) : 406- 415.
  • 10Tuan H D, Apkarian P, Narikiyo T, et al. Parameterized linear matrix inequality techniques in fuzzy control system design[J]. IEEE Trans Fuzzy Syst, 2001, 9(2): 324-332.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部