期刊文献+

无环的本原反对称带号有向图的局部基与基指数

THE LOCAL BASES AND BASES OF PRIMITIVE ANTI-SYMMETRIC SIGNED DIGRAPHS WITH NO LOOPS
下载PDF
导出
摘要 研究了n阶无环的本原反对称带号有向图S的局部基lS(k),得到了lS(k)≤max{n+l-1,n+k-1}(l为S中最小奇圈的长),给出了k≥l时lS(k)=n+k-1的一个极图,因此证明了n阶无环的本原反对称带号有向图S的基指数l(S)≤2n-1,给出了达到上界的极图. Let S be a signed digraph,if the underlying digraph D(S) is symmetric,and each 2-cycle in S is negative,then S is called an anti-symmetric signed digraph.The local bases of primitive anti-symmetric signed digraphs with no loops of order n is studied, and the following conclusion is proved that lS(k)≤ max {n+l-1,n+k-1},where l is the shortest length of odd cycles of S. The upper bounds of the bases of primitive anti-symmetric signed digraphs with no loops of order n are also obtained, and it is shown that the above obtained upper bounds are sharp.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2011年第1期39-42,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(10901061) 高等学校博士学科点专项科研基金项目(20070574006)
关键词 本原 不可幂 反对称 带号有向图 基指数 局部基 primitive non-powerful anti-symmetric signed digraph base local base
  • 相关文献

参考文献6

  • 1BRUALDI R A,RYSER H J.Combinatorical matrix theory[M].Combridge:Combridge Univ Press,1991:53-87.
  • 2BONDY J A,MURTY U S R.Graph theory with application[M].London:Macmillan,1976.
  • 3YOU Lihua,SHAO Jiayu,SHAN Haiying.Bounds on the bases of irreducible generalized sign pattern matrices[J].Linear Algebra Appl,2007,427:285-300.
  • 4CHENG Bo,LOU Bolian.The bases sets of primitive zero -symmetric sign parrern matrices[J].Linear Algebra Appl,2008,428:715 -731.
  • 5WANG Longqin,MIAO Zhengke,YAN Chao.Local bases of primitive non-powerful signed digraphs[J].Discrete Math,2009,309:748 -754.
  • 6范亚东,苗正科,王庆玲.带环的本原不可幂反对称带号有向图的局部基[J].徐州师范大学学报(自然科学版),2009,27(3):10-13. 被引量:1

二级参考文献6

  • 1Bondy J A, Murty U S R. Graph theory with applications[M]. London: Macmillan, 1976.
  • 2Shao Jiayu, You Lihua. Bounds on the bases of irreducible generalized sign pattern matrices[J]. Linear Algebra Appl, 2007,427 (2/3) : 285.
  • 3Brualdi R A, Ryser H J. Combinatorial matrix theory[M]. Combridge : Combridge Univ Press, 1991 : 53-87.
  • 4Cheng Bo, Liu Bolian. The base sets of primitive zero-symmetric sign pattern matrices[J]. Linear Algebra Appl, 2008, 428:715.
  • 5Brualdi R A,Liu B. Generalized exponents of primitive directed matrices[J]. J Graph Theory, 1990,14(4):483.
  • 6Wang Longqin, Miao Zhengke, Yan Chao. Local bases of primitive non-powerful signed digraphs[J]. Discrete Math, 2009, 307(1/2/3) :748.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部