摘要
研究了n阶无环的本原反对称带号有向图S的局部基lS(k),得到了lS(k)≤max{n+l-1,n+k-1}(l为S中最小奇圈的长),给出了k≥l时lS(k)=n+k-1的一个极图,因此证明了n阶无环的本原反对称带号有向图S的基指数l(S)≤2n-1,给出了达到上界的极图.
Let S be a signed digraph,if the underlying digraph D(S) is symmetric,and each 2-cycle in S is negative,then S is called an anti-symmetric signed digraph.The local bases of primitive anti-symmetric signed digraphs with no loops of order n is studied, and the following conclusion is proved that lS(k)≤ max {n+l-1,n+k-1},where l is the shortest length of odd cycles of S. The upper bounds of the bases of primitive anti-symmetric signed digraphs with no loops of order n are also obtained, and it is shown that the above obtained upper bounds are sharp.
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2011年第1期39-42,共4页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(10901061)
高等学校博士学科点专项科研基金项目(20070574006)
关键词
本原
不可幂
反对称
带号有向图
基指数
局部基
primitive
non-powerful
anti-symmetric
signed digraph
base
local base