期刊文献+

赋范空间关于强变分不等式的α-例外簇 被引量:6

α-EXCEPTIONAL FAMILY OF ELEMENTS FOR STRONG VARIATIONAL INEQUALITY IN NORMED SPACES
下载PDF
导出
摘要 在赋范空间提出一个关于强变分不等式问题的α-例外簇的概念,推广了已有的例外簇的概念,并给出相应的解的存在性定理,得到择一型"强变分不等式问题有解,否则存在一个α-例外簇". A new concept of α-exceptional family of elements for the strong variational inequality problem in the normed space is introduced,which generalizes the existing concept of exceptional family of elements.The corresponding existence theorem is given,and thus an alternative conclusion of "strong variational inequality problem has a solution,otherwise there exists a α-exceptional family of elements" is obtained.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2011年第1期43-45,共3页 Journal of South China Normal University(Natural Science Edition)
关键词 强变分不等式问题 α-例外簇 存在性定理 strong variational inequality problem α-exceptional family of elements existence theorem
  • 相关文献

参考文献5

  • 1ISAC G,BULAVASKI V,KALLSHNIKOV V.Exceptional families,topological degree and complementarity problems[J].J global optim,1999,14 (2):207-225.
  • 2谭露琳.空间中变分不等式问题解的存在性与例外簇[J].华南师范大学学报(自然科学版),2009,41(3):22-24. 被引量:7
  • 3ZHOU S Z,BAI M R.A new exceptional family of elements for a variational inequality problem on Hilbert space[J].Appl Math Lett,2004,17:423-428.
  • 4BIANCHI M,HADJISAVVAS N,SCHAIBLE S.Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities[J].J Optim Theory Appl,2004,122(1):1 -17.
  • 5张立平,韩继业,徐大川.Existence theorems of solution to variational inequality problems[J].Science China Mathematics,2001,44(2):201-211. 被引量:3

二级参考文献26

  • 1ZHAO Y B. Existence of a solution to nonlinear variational inequality under generalized positive homogoneity [ J ]. Oper Res Letters,1999,25 : 231 - 239.
  • 2ZHAO Y B, HAN J Y. Exceptional families for a variational inequality problem and its applications [ J ]. J Global Optim, 1999,14:313 -330.
  • 3ZHOU S Z, BAI M R. A new exceptional family of elements for a variational inequality problem on Hilbert space[ J]. Appl Math Lett, 2004,17 : 423 -428.
  • 4SMITH T E. A solution condition for complementarity problems, with an application to spatial price equilibrium [ J ]. Appl Math Computation, 1984,15 : 61 - 69.
  • 5CLARKE F F. Optimization and nonsmooth analysis [M]. New York: J Wiley & Sons,1983.
  • 6OUTRATA W T, KOCVARA M, EOWE J. Nonsmooth approach to optimization problems with equilibrium constraints [ M ]. Dordrecht: Kluwer Academic Publishers, 1998.
  • 7FACCHINEI F, PANG J S. Finte - dimensional variational inequalities and complementarity problems [ M ]. New York : Springer,2003.
  • 8ISAC G, BULAVASKI V, KALASHNIKOV V. Exceptional families, topological degree and complementarity probelems[J]. J Global Optim, 1997,10:207-225.
  • 9ISAC G, ZHAO Y B. Exceptional family of elements and the solvability of variational inequalities for unbounded sets in infinite dimensional Hilbert spaces[J]. J Math Anal Appl, 2000, 246 : 544 - 556.
  • 10TAN L L. Regularized gap functions for nonsmooth variational inequality problems [ J ]. J Math Anal Appl,2007, 334 : 1022 - 1038.

共引文献8

同被引文献25

  • 1董宁,莫浩艺,高兴宝.解广义变分不等式的神经网络[J].工程数学学报,2004,21(F12):78-82. 被引量:1
  • 2ISACG.,LIJin-lu.Exceptional family of elements and the solvability of complementarity problems in uniformly smooth and uniformly convex Banach spaces[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(4):289-295. 被引量:3
  • 3李有梅,申建中,徐宗本.投影型神经网络算法的全局收敛性分析[J].计算机学报,2005,28(7):1178-1184. 被引量:4
  • 4Noor M A.Merit functions for general variational inequalities[J].J Math Anal Appl,2006,316:736-752.
  • 5Hartman P,Stampacchia G.On some nonlinear elliptic differential functional equations[J].Acta Math,1966,115(1):271-310.
  • 6Gao X B.A novel neural network for nonlinear convex programming[J].IEEE Trans on Neural Networks,2004,15(3):613-621.
  • 7Lan H Y,Cui Y S.A neural network method for solving a system of linear variational inequalities[J].Chaos,Solitons and Fractals,2009,41:1245-1252.
  • 8Ding K,Huang N J.A new class of interval projection neural networks for solving interval quadratic program[J].Chaos,Solitons and Fractals,2008,35:718-725.
  • 9Xia Y S,Feng G.A new neural network for solving nonlinear projection equations[J].Neural Networks,2007,20:577-589.
  • 10T.E. Smith. A Solution Condition for Complementarity Problems with an Application to Spatial Price Equilibrium [ J 1. Appl. Math. Computation, 1984, (15) : 61-69.

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部