摘要
Niobium(V) ethoxide(Nb(OEt)5) was synthesized by electrochemical reaction of ethanol with niobium plate as the sacrificial anode,stainless steel as the cathode and tetraethylammonium chloride(TEAC) as the conductive additive.The condensates were isolated by vacuum distillation under 5 kPa.The product was characterized by Fourier transform infrared(FT-IR) spectra,Raman spectra and nuclear magnetic resonance(NMR) spectra.The results indicate that the product is niobium ethoxide.Thermal properties of niobium ethoxide were analysed by TG/DTG.Vapour pressure was calculated from the Langmuir equation and the enthalpy of vaporization was calculated from the vapour pressure-temperature data using the Clausius-Clapeyron equation.The concentrations of impurity metallic elements in the sample were detected by ICP-MS.It is shown that the purity can reach 99.997%.The volatility and purity of the niobium ethoxide ensure that it could be a good precursor for chemical vapor deposition and atomic layer deposition of niobium oxide layers.
Niobium(V) ethoxide (Nb(OEt)5) was synthesized by electrochemical reaction of ethanol with niobium plate as the sacrificial anode, stainless steel as the cathode and tetraethylammonium chloride (TEAC) as the conductive additive. The condensates were isolated by vacuum distillation under 5 kPa. The product was characterized by Fourier transform infrared (FT-IR) spectra, Raman spectra and nuclear magnetic resonance (NMR) spectra. The results indicate that the product is niobium ethoxide. Thermal properties of niobium ethoxide were analysed by TG/DTG. Vapour pressure was calculated from the Langmuir equation and the enthalpy of vaporization was calculated from the vapour pressure-temperature data using the Clausius Clapeyron equation. The concentrations of impurity metallic elements in the sample were detected by ICP-MS. It is shown that the purity can reach 99.997%. The volatility and purity of the niobium ethoxide ensure that it could be a good precursor for chemical vapor deposition and atomic layer deposition of niobium oxide layers.
基金
Project(2007AA03Z425) supported by the National Hi-tech Research and Development Program of China
Project(50404011) supported by the National Natural Science Foundation of China