Hybrid projection method for generalized mixed equilibrium problems,variational inequality problems,and fixed point problems in Banach spaces
Hybrid projection method for generalized mixed equilibrium problems,variational inequality problems,and fixed point problems in Banach spaces
摘要
A new hybrid projection iterative scheme is introduced to approximate a common element of the solution set of a generalized mixed equilibrium problem, the solution set of a variational inequality problem, and the set of fixed points of a relatively weak nonexpansive mapping in the Banach spaces. The obtained results generalize and improve the recent results announced by many other authors.
A new hybrid projection iterative scheme is introduced to approximate a common element of the solution set of a generalized mixed equilibrium problem, the solution set of a variational inequality problem, and the set of fixed points of a relatively weak nonexpansive mapping in the Banach spaces. The obtained results generalize and improve the recent results announced by many other authors.
基金
supported by the National Natural Science Foundation of China (No.11071169)
supported by the Research Project of Shaoxing University(No.09LG1002)
参考文献16
-
1Takahashi,W.Nonlinear Functional Analysis(in Japanese),Kindikagaku,Tokyo(1988).
-
2Zhang,S.S.Generalized mixed equilibrium problem in Banach spaces.Appl.Math.Mech.-Engl.Ed.,30(9),1105-1112(2009) DOI 10.1007/s10483-009-0904-6.
-
3Ceng,L.C.and Yao,J.C.A hybrid iterative scheme for mixed equilibrium problems and fixed point problems.J.Comput.Appl.Math.,214,186-201(2008).
-
4Takahashi,S.and Takahashi,W.Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space.Nonlinear Anal,69,1025-1033(2008).
-
5Habtu,Z.and Naseer,N.S.Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings.Nonlinear Anal.,70,2707-2716(2009).
-
6Matsushita,S.Y.and Takahashi,W.A strong convergence theorem for relatively nonexpansive mappings in a Banach space.J.Approx.Theory,134,257-266(2005).
-
7Takahashi,W.and Zembayashi,K.Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces.Nonlinear Anal,70,45-57(2009).
-
8Chang,S.S.,Lee,J.H.W.,and Chan,C.K.A new hybrid method for solving a generalized equilibrium problem,solving a variational inequality problem and obtaining common fixed points in Banach spaces with applications.Nonlinear Anal.,73,2260-2270(2010).
-
9Alber,Y.Metric and generalized projection operators in Banach spaces:properties and applications.Theory and Applications of Nonlinear Operators of Accretive and Monotone Type,Leture Notes in Pure and Applied Mathematics(ed.Kartsatos,A.G.),Vol.178,Dekker,New York,15-50(1996).
-
10Kamimura,S.and Takahashi,W.Strong convergence of proximal-type algorithm in a Banach space.SIAM J.Optim.,13,938-945(2002).
-
1郭兴明,李秀华.Regularity of obstacle optimal control problem[J].Journal of Shanghai University(English Edition),2006,10(1):1-3.
-
2LIU Bang-tao LUO Min.On Solving a System of Generalized Mixed Equilibrium-like Problems in Hilbert Spaces[J].Chinese Quarterly Journal of Mathematics,2013,28(2):180-189.
-
3Shi Sheng ZHANG,Chi Kin CHAN,H.W.JOSEPH LEE.Modified Block Iterative Method for Solving Convex Feasibility Problem, Equilibrium Problems and Variational Inequality Problems[J].Acta Mathematica Sinica,English Series,2012,28(4):741-758.
-
4Gang CAI.Viscosity Iterative Algorithm for Variational Inequality Problems and Fixed Point Problems of Strict Pseudo-contractions in Uniformly Smooth Banach Spaces[J].Acta Mathematica Sinica,English Series,2015,31(9):1435-1448.
-
5Mingzheng WANG Guihua LIN Yuli GAO M. Montaz ALI.SAMPLE AVERAGE APPROXIMATION METHOD FOR A CLASS OF STOCHASTIC VARIATIONAL INEQUALITY PROBLEMS[J].Journal of Systems Science & Complexity,2011,24(6):1143-1153. 被引量:7
-
6唐金芳.Hilbert空间中混合平衡问题与非扩张半群的强收敛定理[J].数学的实践与认识,2010,40(23):191-199. 被引量:1
-
7丁协平.Banach空间内新的参数广义混合隐平衡问题组的灵敏性分析(英文)[J].四川师范大学学报(自然科学版),2014,37(4):597-611.
-
8丁协平.Auxiliary principle and approximation solvability for system of new generalized mixed equilibrium problems in reflexive Banach spaces[J].Applied Mathematics and Mechanics(English Edition),2011,32(2):231-240.
-
9LIANG Xi ming (Institute of Industrial Process Control, National Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China) XU Cheng xian (School of Science, Xi’an Jiaotong University, Xi’an 710049, China) HU Jian bo (Insti.A POTENTIAL REDUCTION ALGORITHM FOR MONOTONE VARIATIONAL INEQUALITY PROBLEMS[J].Systems Science and Mathematical Sciences,2000,13(1):59-66.
-
10朱浸华.混合平衡问题组及不动点问题公解的算法[J].四川师范大学学报(自然科学版),2012,35(5):656-662. 被引量:2