期刊文献+

Hybrid projection method for generalized mixed equilibrium problems,variational inequality problems,and fixed point problems in Banach spaces

Hybrid projection method for generalized mixed equilibrium problems,variational inequality problems,and fixed point problems in Banach spaces
下载PDF
导出
摘要 A new hybrid projection iterative scheme is introduced to approximate a common element of the solution set of a generalized mixed equilibrium problem, the solution set of a variational inequality problem, and the set of fixed points of a relatively weak nonexpansive mapping in the Banach spaces. The obtained results generalize and improve the recent results announced by many other authors. A new hybrid projection iterative scheme is introduced to approximate a common element of the solution set of a generalized mixed equilibrium problem, the solution set of a variational inequality problem, and the set of fixed points of a relatively weak nonexpansive mapping in the Banach spaces. The obtained results generalize and improve the recent results announced by many other authors.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第2期251-264,共14页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China (No.11071169) supported by the Research Project of Shaoxing University(No.09LG1002)
关键词 relatively weak nonexpansive mapping strong convergence variationalinequality problem inverse strongly monotone mapping generalized mixed equilibriumproblem relatively weak nonexpansive mapping, strong convergence, variationalinequality problem, inverse strongly monotone mapping, generalized mixed equilibriumproblem
  • 相关文献

参考文献16

  • 1Takahashi,W.Nonlinear Functional Analysis(in Japanese),Kindikagaku,Tokyo(1988).
  • 2Zhang,S.S.Generalized mixed equilibrium problem in Banach spaces.Appl.Math.Mech.-Engl.Ed.,30(9),1105-1112(2009) DOI 10.1007/s10483-009-0904-6.
  • 3Ceng,L.C.and Yao,J.C.A hybrid iterative scheme for mixed equilibrium problems and fixed point problems.J.Comput.Appl.Math.,214,186-201(2008).
  • 4Takahashi,S.and Takahashi,W.Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space.Nonlinear Anal,69,1025-1033(2008).
  • 5Habtu,Z.and Naseer,N.S.Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings.Nonlinear Anal.,70,2707-2716(2009).
  • 6Matsushita,S.Y.and Takahashi,W.A strong convergence theorem for relatively nonexpansive mappings in a Banach space.J.Approx.Theory,134,257-266(2005).
  • 7Takahashi,W.and Zembayashi,K.Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces.Nonlinear Anal,70,45-57(2009).
  • 8Chang,S.S.,Lee,J.H.W.,and Chan,C.K.A new hybrid method for solving a generalized equilibrium problem,solving a variational inequality problem and obtaining common fixed points in Banach spaces with applications.Nonlinear Anal.,73,2260-2270(2010).
  • 9Alber,Y.Metric and generalized projection operators in Banach spaces:properties and applications.Theory and Applications of Nonlinear Operators of Accretive and Monotone Type,Leture Notes in Pure and Applied Mathematics(ed.Kartsatos,A.G.),Vol.178,Dekker,New York,15-50(1996).
  • 10Kamimura,S.and Takahashi,W.Strong convergence of proximal-type algorithm in a Banach space.SIAM J.Optim.,13,938-945(2002).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部