期刊文献+

有限乘法群的特殊剖分

Special Partition of Finite Multiplicative Group
下载PDF
导出
摘要 在群原有的运算和性质的基础上,定义了集合剖分的概念以及集合元素间的相关运算,拓展了有限乘法群的运算规律和性质.在两个子群满足两个特殊限定的条件下,首先对它们进行特殊剖分,然后利用它们对复杂的有限乘法群进行特殊的剖分,最后证明了特殊剖分的合理性. Based on the existing properties and operations of group,the definitions of both partition of group and some operations on the elements between two sets were given.The work expands the operations and properties of finite multiplicative group.Special partition is applied to two subgroups which satisfy two specially given limits.With the result,further special partition is applied to complex finite multiplicative group.These prove the rationality of the proposed special partition.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2011年第1期24-25,共2页 Journal of North University of China(Natural Science Edition)
基金 山西省科学技术发展计划项目(20090322003) 山西省高校高新技术产业化项目(20090006)
关键词 剖分 元素 子集 单位元 group partition element subset identity element
  • 相关文献

参考文献6

  • 1张应山.多变矩阵理论[M].北京:中国统计出版社,2006.
  • 2唐有琪.对称性理论[M].北京:科学出版社,1977.
  • 3王伯英.多重线性代数[M],北京:北京师范大学出版社,1985.
  • 4Yingshan ZHANG,Weiguo LI,Shisong MAO,Zhongguo ZHENG.A SIMPLE METHOD FOR CONSTRUCTING ORTHOGONAL ARRAYS BY THE KRONECKER SUM[J].Journal of Systems Science & Complexity,2006,19(2):266-273. 被引量:8
  • 5Feng Naiqin,Qiu Yuhui,Wang Fang,et al.A logic analysis model aboutcomplex system's stability:enlightenment from nature[J].Lecture Notes in Computer Science,2005,3644:828-838.
  • 6Zhang Yingshan,Pang Shanqi,Jiao Zhenming,et al.Group partition and systems of orthogonal idempotents[J].Linear Algebra and its Application,1998,278:249-262.

二级参考文献13

  • 1R. C. Bose and K. A. Bush, Orthogonal arrays of strength two and three, Ann. Math. Statist,1952, 23: 508-524.
  • 2S. Shrikhande, Generalized Hadamard matrices and orthogonal arrays strength two, Canadian Journal of Mathematics, 1964, 16: 736-740.
  • 3Y. S. Zhang, Theory of Multilateral Matrices, Chinese Statistic Press, 1993.
  • 4A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications,Springer-Verlag, New York, 1999.
  • 5Y. S. Zhang, Y. Q. Lu, and S. Q. Pang, Orthogonal arrays obtained by orthogonal decomposition of projection matrices, Statistica Sinica, 1999, 9(2): 595-604.
  • 6Y. S. Zhang, S. Q. Pang, and Y. P.Wang, Orthogonal arrays obtained by generalized Hadamard product, Discrete Mathematics, 2001, 238: 151-170.
  • 7Y. S. Zhang, L. Duan, Y. Q. Lu, and Z. G. Zheng, Construction of Generalized Hadamard Matrices D(r^m(r + 1), r^m(r + 1),p), Journal of Statistics Planning and Inference, 2002, 104(2): 239-258.
  • 8Y. S. Zhang, Asymmetrical orthogonal arrays with run size 100, Chinese Science Bulletin, 1989,23: 1835-1836.
  • 9Y. S. Zhang, Orthogonal arrays with run size 36, J. of Henan Normal University, 1990, 18(4): 1-5.
  • 10Y. S. Zhang, Orthogonal array Lloo(20^15^20), J. of Henan Normal University, 1990, 18(4):93.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部