摘要
讨论了超可微函数空间D*和超广义函数空间ε*′中的卷积运算,利用ε*′与相应的整函数空间A*′,Ω线性拓扑同构的特性,证明了D*(RN)和ε*′(RN)上的卷积映射是连续的.
The convolutions in ultradifferentiable functions D* and ultradistributions ε′* were discussed,and it is obtained that the convolution maps on D*(RN) and ε*′(RN) are continuous by using the relation of linear topological isomorphism between ultradistributions ε*′ and entire functions A*′,Ω.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2011年第1期60-62,共3页
Journal of North University of China(Natural Science Edition)
基金
山西省回国人员基金资助项目
关键词
超可微函数空间
超广义函数空间
卷积
ultradifferentiable functions
ultradistributions
convolution