期刊文献+

一类非线性波动方程解的性质

Property of Solution to a Nonlinear Wave Equation
下载PDF
导出
摘要 研究了一类具有线性阻尼和非线性源项的变系数波动方程Cauchy问题,由于这个非线性问题的显式解求不出来,因此对解的性质的讨论就很必要.利用凸性方法证明了初值、源项的增长阶数在一定的条件下解在有限时刻发生爆破,利用能量扰动法证明了在一定条件下解是整体存在的. A class of Cauchy problem of wave equations with varying coefficients,linear damping and nonlinear source term was discussed.Since the explicit solution of the problem can not be solved,the discussion to the property of the solution is important.By using convexity method,the blow-up solution within finite time was proved that if initial values,the damping and the growth of source term are under certain conditions.With energy perturbation method,the global existence of the solution was proved that if initial values,the damping and the growth of source term are under certain conditions.
作者 裴金仙
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2011年第1期74-76,共3页 Journal of North University of China(Natural Science Edition)
关键词 非线性波动方程 CAUCHY问题 非线性源项 整体存在性 爆破 nonlinear wave equation Cauchy problem nonlinear source term global existence blow-up
  • 相关文献

参考文献10

  • 1Levine H A.Some additional remarks on the nonexistence of global solutions to nonlinear wave equations[J].SIAM J.Math.Anal.,1974,5(4):138-146.
  • 2Levine H A.Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt=-Au+F(u)[J].Trans.Amer.Math.Soc.,1974,192:1-21.
  • 3Sattinger D H.On global solution of nonlinear hyperbolic equations[J].Arch.Rational Mech.Anal.,1968,30:148-172.
  • 4Ball J.Remarks on blow up and nonexistence theorems for nonlinear evolutions equations,Quart[J].J.Math.Oxford,1977,28:437-486.
  • 5Payne L E.Saddle points and instability of nonlinear hyperbolic equations[J].Israel J.Math.,1975,22:273.
  • 6Zhou Yong.A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in RN[J].Appl.Math.Letters,2005,18:281-286.
  • 7王艳萍,李嘉.一类非线性双曲型方程Cauchy问题解的爆破[J].西南大学学报(自然科学版),2007,29(10):25-28. 被引量:4
  • 8Zhou Yong.Blow-up of solutions to a nonlinear dispersive rod equation[J].Calcul.Variat.Partial Diffe.Equat.,2006,25(1):63-77.
  • 9丁丹平,毕云蕊.广义超弹性杆方程解的爆破[J].合肥工业大学学报(自然科学版),2010,33(4):597-599. 被引量:1
  • 10Todorova G.Cauchy problems for a nonlinear wave equations with nonlinear damping and source terms[J].Nonlinear Anal.,2000,41:891-905.

二级参考文献21

  • 1Constantin A,Escher J. Global existence and blow-up for a shallow water equation[J]. Ann Scuola Norm, SUP Pisacl Sci,1998, 26 (4):303-328.
  • 2Vukadinovic J. On the backwards behavior of the solutions of the 2D periodic viscous Camassa-Holm equation[J]. Journal of Dynamics and Differential Equations, 2002, 14 (1):37-62.
  • 3Ding Danping, Tian Lixin, Xu Gang. The study on solutions to Camassa-Holm equation [J]. Commu Pure Appl Anal, 2006,5(3) :483-492.
  • 4Constantin A. On the Cauchy problem for the periodic Camassa-Holm equation[J]. Differential Equations, 1997, 141 (2):218-235.
  • 5Constantin A, Mocinet L. Global weak solutions for a shallow water equation[J]. Commun Math Phys, 2000,211 (1) :45-61.
  • 6Hotden H,Rayanud X. Global conservative solutions of the generalized hyperelastic-rod wave equation[J]. J Differential Equations, 2007,233 (2) : 448-484.
  • 7Constantin A, Escher J. Wave breaking for nonlinear shallow water equations [J]. Acta Math, 1998, 181 (2) :229-243.
  • 8Liu Hailiang, Tadmor E. Critical thresholds in a convolution model for nonlinear conservation laws[J]. SIAM J Math Anal, 2001,33 (4) : 930- 945.
  • 9Schochet S, Tadmor E. Regularized Chapman-Enskog expansion for scalar conservation laws [J]. Arch Rational Mech Anal,1992,119(2) :95-107.
  • 10Dai Huihui. Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod [J]. Aeta Mech, 1998,127(1) : 193-207.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部