期刊文献+

分数阶微分方程连续解的存在性定理

The Theorem of Existence of Continuous Solution for a Fractional Differential Equation
下载PDF
导出
摘要 研究了更为一般的分数阶微分方程是否存在连续解的问题.若微分方程中的函数满足条件f(t,u)-f(t,v)≤λ(t)h(r)时,由于考虑到了该微分方程所等价的积分方程,故通过定义算子利用Schander不动点定理得到了此类分数阶微分方程连续解的存在性定理.当λ(t)为常数时,条件变为了Osgood条件,进而将经典的Osgood条件存在性定理推广到了一般的分数阶微分方程中. The existence of continuous solutions of the more generalized fractional differential equations was studied.When the involved functions of differential equations satisfy the condition |f(t,u)-f(t,v)|≤λ(t)h(r), the differential equation is equivalent to the integral equation.By defining the operator and using Schander fixed point theorem,the continuous existence theorem was proved.When λ(t) is a constant,the condition becomes a Osgood condition,then the existence theorem of the classical Osgood conditions extends to more generalized fractional differential equations.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2011年第1期84-86,共3页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(10961020) 山西省自然科学基金资助项目(2006011013)
关键词 Riemann-Liouville分数阶微积分 微分方程 存在性 Riemann-Liouville fraction integral and derivative differential equation existence
  • 相关文献

参考文献6

  • 1Babakhani A,Daftardar-Gejji V.Existence of positive solutions of nonlinear fractional differential equations[J].Math.Anal.Appl.,2003,278:434-442.
  • 2Zhang S.The existence of a positive solution for a nonlinear fractional differential equation[J].Math.Anal.Appl.,2000,252:804-812.
  • 3Diethlm K,Ford N J.Analysis of fractional differential equations[J].Math.Anal.Appl.,2002,265:229-248.
  • 4Srivastava H M,Saxena R K.Operators of fractional integration and their applications[J].Appl.Math.Comput.,2001,118:1-52.
  • 5Podlubny I.Fractional differential equations[M].London:Academic Press,1999.
  • 6Yu Cheng,Gao Guozhu.Existence of fractional differential equations[J].Math.Anal.Appl.,2005,310:26-29.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部