期刊文献+

基于模型诊断的抽象分层过程 被引量:4

Hierarchical Abstraction Process in Model-Based Diagnosis
下载PDF
导出
摘要 分层诊断是降低基于模型诊断计算复杂性的一个重要方法,在分层诊断中很重要的一步是构造系统的抽象分层模型,以往的分层方法都是建立在某一种特定抽象模型基础上,没有将抽象的一般理论与基于模型诊断中的分层过程相联系,并且对自动生成系统的分层表示方法也没有形式化的分析.KRA(Knowledge Reformulationand Abstraction)模型从构造化的角度定义了表示抽象的一般框架,文中在KRA模型框架下建立系统模型,给出了抽象算子在系统的基本框架Rg上进行的非独立的运算过程,使得不会在抽象过程中生成重复的部件类型,不仅降低了存储空间,还增加了在进一步的抽象运算中算子重用的概率,提高了整个抽象运算的效率.同时描述了基于模型诊断中的抽象分层过程,提出了动态和静态构造算子库两种方法,并对其优缺点进行分析,给出了一个应用抽象算子集合自动生成待诊断系统分层表示的一般算法. Hierarchical diagnosis is an important method for reducing the complexity of model-based diagnosis.It is a significant step for hierarchical diagnosis to construct the hierarchical model of the system to be diagnosed.The previous methods have been based on some particular abstraction model.And they have not related the generic notion of abstraction to hierarchical process in model-based diagnosis and not formally analyzed the methods of automatically building the hierarchy of the system.The KRA(Knowledge Reformulation Abstraction) model provides a general framework from a view of constructive point which has potential to unite the former abstraction methods.The authors constructed the system model within the KRA model framework.This model provides a dependent operating process based on the basic framework Rg of the system.The process avoids producing a repetitious basic type and thus not only reduces space complexity but also makes the abstract operators reused more frequently to improve the performance of the whole abstraction operating.In this paper the authors describe the hierarchical abstraction process in model-based diagnosis and provide a general algorithm to automatically construct the hierarchical representation of the system to be diagnosed.The algorithm runs by building the operators database in two ways: Dynamic and Static whose advantage and disadvantage are also analyzed.In addition,the authors also discuss the validity and complexity of the proposed algorithm.
出处 《计算机学报》 EI CSCD 北大核心 2011年第2期383-394,共12页 Chinese Journal of Computers
基金 国家自然科学基金(60973089 60873148 60773097 61003101) 吉林省科技发展计划项目基金(20100173 20101501 20100185 20090108 20080107) 浙江省自然科学基金(Y1100191) 欧盟合作项目(155776-EM-1-2009-1-IT-ERAMUNDUS-ECW-L12) 吉林大学符号计算与知识工程教育部重点实验室开放项目(93K-17-2009-K05)资助
关键词 基于模型的诊断 分层诊断 KRA模型 算子库 自动分层 model-based diagnosis Hierarchical diagnosis the KRA model operators database automatic hierarchy
  • 相关文献

参考文献14

  • 1陈荣,姜云飞.含约束的基于模型的诊断系统[J].计算机学报,2001,24(2):127-135. 被引量:15
  • 2Mozetic I.Hierarchical model-based diagnosis.International Journal of Man-Machine Studies,1991,35(3):329-362.
  • 3Chittaro L,Ranon R.Hierarchical model-based diagnosis based on structural abstraction.Artificial Intelligence,2004,155(1-2):147-182.
  • 4Saitta Lorenza,Pietro Torasso,Gianluca Torta.Formalizing the abstraction process in model-based diagnosis//Proceed-ings of the SARA.2007:314-328.
  • 5Saitta L,Zucker J.Semantic abstraction for concept representation and learning//Proceedings of the SARA.1998:103-120.
  • 6Saitta L,Zucker J-D.A model of abstraction in visual perception.Applied Artificial Intelligence,2001,15(8):761-776.
  • 7Holte R,Mkadmi T,Zimmer R,MacDonald A.Speeding up problem-solving by abstraction:A graph-oriented approach.Artificial Intelligence,1996,85:321-361.
  • 8Knoblock C,Tenenberg J,Qiang Y.A spectrum of abstraction hierarchies for planning//Proceedings of the AAAI WSon AGAA,1990:24-35.
  • 9Giunchiglia F,Walsh T.A theory of abstraction.Artificial Intelligence,1992,57(2-3):323-389.
  • 10Nayak P,Levy A.A semantic theory of abstraction//Proceedings of the IJCAI,1995:196-202.

二级参考文献1

共引文献14

同被引文献58

  • 1李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 2张文修 ,仇国芳 ,吴伟志 .粗糙集属性约简的一般理论[J].中国科学(E辑),2005,35(12):1304-1313. 被引量:37
  • 3季晓慧,张健.约束问题求解[J].自动化学报,2007,33(2):125-131. 被引量:13
  • 4Reiter. A theory of diagnosis from first prineiples[J]. Artificial Intelligence, 1987,32 : 57-96.
  • 5Chittaro L. Hierarchical model-based diagnosis based on struc- tural abstraction[J]. Artificial Intelligence, 2004,155 : 147-182.
  • 6Baroni P. Diagnosis of large active systems[J]. Artificial Intelli- gence, 1999,110,135-183.
  • 7Console L, Pieardi C, Ribaudo M. Process algebras for systems diagnosis[J]. Artificial Intelligence, 2002,142 ; 19-51.
  • 8Zhang Xue-nong. Formal analysis of diagnostic notions[C]// Proceedings of International Conference on Machine Learningand Cybernetics. Xi'an,China,2012:1303-1307.
  • 9Pencole Y. A formal framework for the decentralised diagnosis of large scale discrete event systems and its application to tele- communication networks [J ]. Artificial Intelligence, 2005, 164 : 121-170.
  • 10Portinale L, Magro D, Torasso P. Multi-modal diagnosis combi- ning case-based and model-based reasoning:a formal and experi- mental analysis[J]. Artificial Intelligence, 2004,158:109-153.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部