摘要
针对核建模方法中单一核函数不能准确描述数据的分布特性问题,提出一种基于混合核函数的正交最小二乘(OLS)算法并将其用于工业过程软测量建模。采用混合核函数代替基本OLS方法中的单一核函数,利用混合核函数兼具局部和全局核函数的性能,可以提高模型的泛化能力和非线性处理能力。核参数的选择对模型的影响较大,采用粒子群优化算法对核参数进行寻优。在工业聚丙烯熔融指数软测量模型中的应用结果表明,基于混合核函数OLS方法能够比PLS、基本OLS方法更准确地预测熔融指数的变化情况。
With regard to the problem that single kernel can not accurately describe the distribution character of data in the kernel modeling method, an algorithm of orthogonal least square(OLS)based the mixed kernels is proposed and used for soft sensor modeling in industrial process. To take the mixed kernels replace single kernel in OLS and utilize properties of local and global kernel of the mixed kernel can improve their genelization ability and nonlinear treatment capacity. The selection of kernel parameters has great influence for the model, the particle swarm optimization algorithm is used to carry out selection of kernel parameters. The application of industrial polypropylene melt index soft measurement modeling has indicated that OLS based the mixed kernels can more accurately predict change of index than PLS and basic OLS method.
出处
《石油化工自动化》
CAS
2011年第1期31-35,共5页
Automation in Petro-chemical Industry
基金
国家863计划项目(2007AA04Z193)
山东省自然科学基金项目(Y2007G49)
关键词
软测量
正交最小二乘
核函数
粒子群
soft sensor
orthogonal least squares
kernel
particle swarm