期刊文献+

基于PSO算法的机械臂PID控制器参数优化 被引量:6

Parameters Optimization of Robot Arm PID Controllers Based on PSO Algorithm
下载PDF
导出
摘要 机械臂的工作环境复杂,对其工作的响应指标要求较高。PID控制受限于机械臂的数学模型的复杂性与不精确性,导致经典的参数整定方法在实际生产中适应性不良或性能欠佳。文章基于MATLAB/Simulink将PSO算法(粒子群优化算法)用于机械臂PID控制器的参数优化中,通过对3关节连杆机械臂单次拉伸动作的建模仿真研究,结果表明:使用此方法后,机械臂各关节响应的调节时间和超调量都得到明显的优化。 The robot arm always runs in a complex condition,and the demand for its state response performance index is high.PID control is restricted to the complicacy and the inexactitude of robot arm's mathematics model,which leads the classical parameters tuning methods to the maladjustment and the suboptimal performance in real operating.And the PSO algorithm is presented and applied to optimize PID parameters in robot arm based on MATLAB/Simulink.According to the simulation of a stretching movement in a 3-joint-robot arm,the numerical simulation shows that by this method the setting time and overshoot of every joint in the robot arm present optimized distinctly.
出处 《组合机床与自动化加工技术》 北大核心 2011年第2期89-92,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金(60704042) 福建省自然科学基金(2008J0033)
关键词 PID控制器 参数优化 粒子群优化算法 机械臂 PID control parameters optimization PSO algorithm robot arm
  • 相关文献

参考文献10

  • 1W K Ho, O P Gan, E B Tay, E LAng. Performance and gain and phase margins of well-known PID tuning formulas [ J ]. IEEE Trans. Control Systems Technology, 1996,4 (4) :473 -477.
  • 2C C Hang, K J Astrom, W K Ho. Refinements of the Ziegler- Nichols tuning formula[ J ]. IEEE PROCEEDINGS-D, 1991 , 138(2):111 -117.
  • 3Yamille del Valle, Ganesh Kumar, Venayagamoorthy, Salman Mohagheghi, Jean-Carlos Hernandez, Ronald G. Harley, Fellow, IEEE. Particle Swarm Optimizatlon: Basie Concepts, Variants and Applications in Power Systems [ J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008,12(2) :171 - 195.
  • 4Chin Aik Koay, Dipti Srinivasan. Particle swarm optimization-based approach for generator maintenance scheduling [ C ]. Indiana, USA : Proceedings of the IEEE Swarm Intelligence Symposium 2003:167 - 173.
  • 5Z Gaing. A particle swarm optimization approach for optimum design of PID controller in AVR system [ J]. IEEE Trans. Energy Conversion, 2004,19 (2) :384 - 391.
  • 6王介生,王金城,王伟.基于粒子群算法的PID控制器参数自整定[J].控制与决策,2005,20(1):73-76. 被引量:83
  • 7方红庆,沈祖诒.基于改进粒子群算法的水轮发电机组PID调速器参数优化[J].中国电机工程学报,2005,25(22):120-124. 被引量:73
  • 8李剑波,王东风,付萍,韩璞.基于改进粒子群算法的主汽温系统PID参数优化[J].华北电力大学学报(自然科学版),2005,32(4):26-30. 被引量:17
  • 9李波,唐永哲,章萌.基于粒子群算法的运输机PID控制器参数寻优[J].计算机测量与控制,2009,17(10):1987-1989. 被引量:7
  • 10Amon Tunwannarux, Supanunt Tunwannarux. Design of a 5-Joint Mechanical Arm with User-Friendly Control Program [ J]. World Academy of Science, Engineering and Technology, 2007(27):43 -48.

二级参考文献37

共引文献169

同被引文献56

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部