期刊文献+

一类具有多时滞和非线性发生率的脉冲接种SEIRS传染病模型 被引量:8

A impulsive Vaccination SEIRS epidemic model with multi-delay and nonlinear incidence rate
下载PDF
导出
摘要 研究脉冲预防接种下具有非线性发生率和带有多个时滞的SEIRS传染病模型的动力学行为,利用比较原理,证明当R*<1时无病周期解的全局吸引性,并给出当R*>1时疾病持续生存的充分条件. The dynamical behavior of SEIRS epidemic model with nonlinear incidence rate and multi-delay was studied in the case of impulsive vaccination.By using the comparison principle,the global attractivity of infection-free periodic solution was verified when R*1,and a sufficient condition for the permanence of the epidemic was also given for R*1.
出处 《兰州理工大学学报》 CAS 北大核心 2011年第1期121-125,共5页 Journal of Lanzhou University of Technology
基金 兰州理工大学博士基金(BS10200903)的资助
关键词 SEIRS模型 脉冲接种 时滞 全局吸引性 持久性 SEIRS model impulsive vaccination time delay global attractivity permanence
  • 相关文献

参考文献8

  • 1黄灿云,丁红,岳甲龙.斑块环境下具有Holling-Ⅱ的捕食-食饵系统的稳定性[J].兰州理工大学学报,2009,35(3):146-149. 被引量:4
  • 2霍海峰,付强,孙小科,张小兵,向红.一类时滞周期捕食-食饵模型的持久性[J].兰州理工大学学报,2009,35(3):134-138. 被引量:7
  • 3ZHAO Z,CHEN L,SONG X.Impulsive vaccination of a SEIR epidemic mndel with time delay and nonlinear incidence rate[J].Mathematics and Computer in Simulation,2008,79(3):500-510.
  • 4ZHANG T,TENG Z.Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence[J].Chaos,Solitons and Fractals,2008,37(5):1456-1468.
  • 5ZHANG T,TENG Z.Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model[J].Chaos.Solitons and Fractals,2009,39:2411-2425.
  • 6WANG X,TAO Y,SONG X.Pulse vaccination on SEIR epidemic model with nonlinear incidence rate[J].Appl Math Comput,2009,210:398-404.
  • 7GAO S,CHEN L.Pulse vaccination strategy in a delayed SIR epidemic model with vertical transmission[J].Discrete Contin Dyn Syst Ser B,2007,7(1):77-86.
  • 8KUANG Y.Delay differential equation with application in population dynamics[M].New York:Academic press,1993.

二级参考文献16

  • 1黄灿云,丁红,惠富春.斑块环境下具有Holling-2的捕食-食饵系统的持久性[J].甘肃科学学报,2008,20(4):5-8. 被引量:4
  • 2金志龙.周期环境下具有年龄结构种群动力系统的最优控制[J].兰州理工大学学报,2007,33(2):161-163. 被引量:1
  • 3CUI J A,SONG X Y.Permanence of a predator-prey system with stage structure[J].Discret Contin Dyn Ser B,2004,4(3):547-554.
  • 4CUI J A,SUN Y.Permanence of predator-prey system with infinite delay[J].Electron J Differ Equat,2004,81:1-12.
  • 5CHEN F D.Permanence of periodic Holling type predator-prey system with stage Structure for prey[J].Appl Comput,2006,182:1849-1860.
  • 6ZHANG H,CHEN L S.Permanence and extinction of a periodic predator-prey delay system with functional response and stage structure for prey[J].Math Comput,2007,184:931-944.
  • 7ZHANG Z Q.Periodic solutions of a predator-prey system with stage-structures for predator and prey[J].J Math Anal Appl,2005,302(2):291-305.
  • 8CUSHING J M.Periodic time dependent predator-prey system[J].SIAM J Math,1977,32:82-95.
  • 9HUO H F,LI W T,NIETO J J.Periodic solutions of delayed predator-prey model with the Beddington-DeAngelis functional response[J].Chaos Solitons Fractals,2007,33(2):505-512.
  • 10CUI J,CHEN L,WANG W.The effect of dispersal on population growth with stage-Structure[J].Comput Math Appl,2002,39:91-102.

共引文献8

同被引文献68

  • 1杨金根,李学志,张喜来.带脉冲接种和垂直传染的时滞乙肝模型[J].应用泛函分析学报,2013,15(1):66-71. 被引量:1
  • 2庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 3朱道军,兰叶霞.具有多时滞捕食-被捕食流行病模型的稳定性[J].安徽大学学报(自然科学版),2007,31(4):5-8. 被引量:1
  • 4庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 5SHULGIN B,STONE L, AGUR Z. Pulse vaccination strategy in the SIR epidemic model [J]. Bulletin of Mathematical Biolo- gy, 1998,60 : 1123-1148.
  • 6JIANG Y, WEI H, SONG X. Global attractivity and perma- nence of a delayed SVEIR epidemic model with pulse vaccina- tion and saturation incidence [J]. Applied Mathematical and Computation, 2009,213 : 312-321.
  • 7MENG X Z,JIAO J J,CHEN L S. Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination [J]. Chaos, Solitons and Fractals, 2009,40 : 2114-2125.
  • 8BERETTA E, HARA T, MA W, et al. Global asymptotic sta- bility of an SIR epidemic model with distributed time delay [J]. Nonlinear Analysis.-Theory, Methods and Applications, 2001,47(6) : 4107-4115.
  • 9GAO S J, TENG Z D, NIETO J J, et al. Analysis of an SIR epi- demic model with pulse vaccination and distributed time delay[J]. Journal of Biomedicine and Biotechnology, 2007,2007: 1- 10.
  • 10KUANG Y. Delay differential equation with application in pop- ulation dynamics [M]. New York: Academic Press, 1993: 67- 70.

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部