期刊文献+

基于多个颜色分布模型的粒子滤波跟踪算法 被引量:2

Particle filter tracker based on multiple color distribution models
下载PDF
导出
摘要 基于粒子滤波的目标跟踪性能在很大程度上依赖于观测模型的选择。为了解决被跟踪目标外观特征变化导致模型漂移问题,提出了一种新的粒子滤波算法,利用目标外观的先验知识,为目标建立多个颜色模型,通过对目标函数的优化,采用最优凸组合模型实时地对目标进行跟踪。同时,采用UKF(Unscented Kalman Filter)产生粒子滤波的建议分布,并从中抽取粒子。由于考虑到当前观测,使得粒子分布更加接近后验概率分布,用较少的粒子就可以逼近目标的真实状态。实验结果表明,与单一模型以及自适应模型算法相比,多模型的粒子滤波算法能够有效处理由于目标外观变化而导致跟踪性能下降甚至丢失目标的问题,而且计算代价不大。 The performance of target tracking via particle filtering are closely related to the observation model. A novel particle filter algorithm has been proposed to solve the model shift caused by appearance changes of the target. We model the multiple color distributions according to prior knowledge of the target. Through minimizing the cost function, the optimal convex combination model is selected to track the target in real time. Meanwhile utilizing UKF(Unscented Kalman Filer) generates the proposed particle distribution and extracts particles. Due to considering the current measurements, the distribution of particles is closer to posterior probability density, and a smaller number of particles can be approximated to the true state of the target. Experiment results show that the proposed algorithm has better tracking precision than the standard particle filter and low computational cost.
出处 《电路与系统学报》 CSCD 北大核心 2011年第1期92-96,共5页 Journal of Circuits and Systems
基金 国家自然科学资助基金(60902088)
关键词 视频跟踪 粒子滤波 多模型 UKF visual tracking particle filter multiple model unscented Kalman filter
  • 相关文献

参考文献11

  • 1Gordon N,Salmond D.Novel approach to non-linear and non-Gaussian Bayesian state estimation[J].Proc.of Institute Electric Engineering,1993,140(2):107-113.
  • 2Isard M,Blake A.Condensation-conditional density propagation for visual tracking[J].International Journal of Computer Vision,1998,29(1):5-28.
  • 3Van der MERME R,DOUCET A.de FREITAS N,WAN E.The Unscented Particle Filter[R].London:Cambridge University,2000.
  • 4Katja Nummiaro,Esther Koller-Meier,Luc Van Gool.An adaptive color-based particle filter[J].Image and Vision Computing,2003,21(1):99-110.
  • 5Zhou S K,Chellappa R,Moghaddam B.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE Transactions on Image Processing,2004,13(11):1491-1506.
  • 6左军毅,梁彦,潘泉,赵春晖,张洪才.基于多个颜色分布模型的Camshift跟踪算法[J].自动化学报,2008,34(7):736-742. 被引量:30
  • 7Ido Leichter,Michael Lindenbaum,Ehud Rivlin.Mean Shift tracking with multiple reference color histograms[J].Computer Vision and Image Understanding,2010,114:400-408.
  • 8Crisan,D,A Doucet.A survey of convergence results on particle filtering methods for practitioners[J].IEEE Trans.Speed and Audio Proc.,2002.10(3):173-185.
  • 9Arulampalam M,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/oon-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Process,2002,50(2):174-188.
  • 10Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statist Computer,2000,10:197-208.

二级参考文献10

  • 1Bradski G R. Real time face and object tracking as a component of a perceptual user interface. In: Proceedings of the 4th Workshop on Application of Computer Vision. Princeton. USA: IEEE. 1998. 214-219.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-577.
  • 3Comaniciu D. Meer P. Mean Shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 4Babu R V, Perez P. Bouthemy P. Robust tracking with motion estimation and local kernel-based color modeling. Image and Vision Computing. 2007. 25(8): 1205-1216.
  • 5Zhou S K, Chellappa R. Moghaddam B. Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Transactions on Image Processing, 2004, 13(11): 1491-1506.
  • 6Lee K C, Kriegman D. Online learning of probabilistic appearance manifolds for video-based recognition and tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 852-859.
  • 7Nguyen H T, Ji Q, Smeulders A W M. Spatio-temporal context for robust multitarget tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 52-64.
  • 8Ross D, Lim J, Yang M H. Adaptive probabilistic visual tracking with incremental subspace update. In: Proceedings of the 8th European Conference on Computer Vision. Prague, Czech Republic: Springer, 2004. 215-227.
  • 9Collins R T, Liu Y X, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643.
  • 10Matthews L, Ishikawa T, Baker S. The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 810-815.

共引文献29

同被引文献30

  • 1Sorenson H W. Kalman Filtering: Theory and Application[M]. New York, USA: IEEE Press, 1985.
  • 2Gordon N J, Salmond D J, Smith A F M. Novel Approach to Non-linear and Non-Gaussian Bayesian State Estimation[J]. IEEE Proceedings of Radar and Signal Processing, 1993, 140(2): 107- 113.
  • 3Isard M, Blake A. Condensation-conditional Density Propagation for Visual Tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5-28.
  • 4Doucet A, Godsilll S, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J]. Journal of Statistics and Computing, 2000, 10(3): 197-208.
  • 5Merwe R, Doucet A, Freitas N, et al. The Unscented Particle Filter[R]. Engineering Department, Cambridge University, Technical Report: CUED/F-INFENG/TR 380, 2000.
  • 6Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 175-181.
  • 7Dalai N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S..1.]: IEEE Press, 2005: 886-893.
  • 8Gordon N J, Salmond D J. Novel approach to non-linear /non-Gaussian Bayesian state estimation[C]//Radar and Signal Processing, Proceedings F. [S. 1. ] : lET Digital Library, 1993,140(2) :107 - 113.
  • 9Pan P, Schonfeld D. Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18 (9): 1268- 1279.
  • 10Isard M, Blake A. Condensation--conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998,29(1) :5 - 28.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部