期刊文献+

带形状参数Bézier曲线的G^1连续降阶方法的研究

The Study on Degree Reduction of G^1-continuity of Bézier Curves with Shape Parameter
下载PDF
导出
摘要 基于L2范数下的n次带形状参数Bézier曲线,给出了一种在G1连续条件下的一次降多阶逼近方法.求出待降阶曲线和降阶逼近曲线在L2范数下的误差函数,利用共轭梯度迭代法使其最小化,得到新的降阶逼近曲线的控制顶点.并且利用数值实例,与其它降阶方法相比较,说明本文方法更有效. The Bézier curve with shape parameter of degree n in L2-norm was discussed and a method about the multi-degree reduction of its G1-continuity was presented.The error function in L2-norm between the degree reduced curves and degree reduction of approximation curves was solved and the error was minimized by conjugate gradient iteration method.The new control points were obtained.Compared with other methods by numerical examples,this method is more effective.
作者 汪平
出处 《佳木斯大学学报(自然科学版)》 CAS 2011年第1期117-119,122,共4页 Journal of Jiamusi University:Natural Science Edition
基金 安徽省自然科学基金资助项目(070416227)
关键词 带形状参数Bézier曲线 降阶 G1连续 L2范数 Bézier curves with shape parameter degree reduction G1-continuity L2-norm
  • 相关文献

参考文献12

  • 1Wang Wentao,Wang Cuozhao,Bézier Curves with Shape Parameter[J] ,Journal of Zhejiang University Science,2005,6A(6):497-501.
  • 2Hu Shimin,Sun Jiaguang,Jin Tongguang,Wang Cuozhao.Approximate Degree Reduction of Bézier Curves[J].Tsinghua Science and Technology,1998,3(2):997-1000.
  • 3Lizheng Lu,Guozhao Wang.Optimal Multi-degree Reduction of Bézier Curves with G2-continuity[J].Computer Aided Ceometric Design,2006,23(9):673-683.
  • 4Eck,M.,Least Squares Degree Reduction of Bézier Curvea.Computer Aided Design[J] ,1995,27(11):845-851.
  • 5Ahn,Y.J,Lee,B.G,Park,Y.,Yoo,J.,Conatrained Polynomial Degree Reduction in the L2-norm Equals Best Weighted Euclidean Approximation of Bézier Coefficients[J].Computer Aided Geometne Design 2004,21(2):181-191.
  • 6Young Joon Ahn,Using Jacobi Polynomials for Degree Reduction of Bézier Curves with Ck-constraints[J].Computer Aided Geometric Design,2003,20(7):423-434.
  • 7Guo-Dong Chen,Guo-Jin Wang.Optimal Multi-degree Reduction of Bézier Curves with Constraints of Endpoints Continuity[J].Computer Aided Geometric Design,2002,19(6):365-377.
  • 8Forrest,A.R.,Interactive Interpolation and Approximation by Bézier Polynomials(J].Computer Aided Gpmetric Design,1990.22(9):527-537.
  • 9Pawel Wozny.Stanislaw Lewanowicz.Multi-degree Reduction of Bézier Curves with Constraints.Using Dual Bernstein Basis Polynomials[J].Computer Aided Geometric Design,2009,26(5):566-579.
  • 10Falai Chen,Wu Yang.Degree Reduction of Disk Bézier Curves[J].Computer Aided Geometric Design,2004,21(3):263-280.

二级参考文献12

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部