期刊文献+

Cr掺杂LiFePO_4导电性能的第一原理研究 被引量:3

First Principle Study on Conductivity of Cr-doped LiFePO_4
下载PDF
导出
摘要 基于第一原理方法,由广义梯度近似(GGA)的密度泛函理论计算了Cr在Fe位掺杂的LiFePO4的电子结构,分析了不同掺杂量对晶胞参数,体积和费米能的影响。掺杂Cr后,系统的态密度图中费米能级移入导带;费米能级附近的价带和导带的峰强度增强;能带结构图中最低空轨道与最高占有轨道之间的能隙变窄,从LiFePO4的0.75 eV降至LiFe0.95Cr0.05PO4的0.62 eV。且上述现象在掺杂Cr含量较少时,变化更明显,表明少量的Cr掺杂有利于提高LiFePO4的导电性能,结果与实验相符。 Based on the first principle method,the electronic structures of Cr-doped LiFePO4 were calculated by density functional theory(DFT) of general gradient approximation(GGA).The effects of Cr-doped LiFePO4 structures on the cell parameters,cell volumes and Fermi energies were analyzed.The calculated results show that the Fermi level of LiFe1-xCrxPO4 moves into conduction bands with Cr doping.The peak intensity of valence bands and conduction bands increases near the Fermi level.The band gap between LUMO and HOMO decreases from 0.75 eV(LiFePO4) to 0.62 eV(LiFe0.95Cr0.05PO4).A small amount of doped Cr results in obvious effects on electronic structures,which indicates that the conductivity of LiFePO4 can be improved.The theoretical analyses are consistent with the experimental results.
出处 《金属功能材料》 CAS 2011年第1期44-48,共5页 Metallic Functional Materials
基金 安徽省重点科研基金(No.08020203005 No.07020203003)
关键词 LIFEPO4 CR掺杂 电子结构 能隙 导电性能 LiFePO4 Cr doping electronic structure band gap conductivity
  • 相关文献

参考文献14

  • 1Padhi A K,Nanjundaswamy K S,Goodenough J B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].Journal of the Electrochemical Society,1997,144(4):1188-1194.
  • 2Li Xueliang,Wang Weidong,et al.Structural and electrochemi cal characterization of LiFePO4/C prepared by a sol-gel route with long-and short-chain carbon sources[J].Journal of Solid State Electrochemistry,2009,13(6):921-926.
  • 3Chung S Y,Bloking J T,Chiang Y M.Electronically conductive phospho-olivines as lithium storage electrodes[J].Nature Materials,2002,1(2):123-128.
  • 4Guo Xiaodong,Zhong Benhe,et al.The Preparation of LiFe-PO4/C Cathode by a Modified Carbon-Coated Method[J].Journal of the Electrochemical.Society,2009,156(10):A787A790.
  • 5Yang Murong,Ke W.H.The doping effect on the electrochemical properties of LiFe0.95M0.05PO4(M = Mg2+,Ni2+,Al3+,or V3+)as cathode materials for lithium-ion cells[J].Journal of the Electrochemical Society,2008,155(10):A729-A732.
  • 6Wang Dingsheng,Li Hong,et al.Improving the rate performance of LiFePO4 by Fe-site doping[J].Electrochimica Acta,2005,50(14):2955-2958.
  • 7鲁道荣,吴彬,谭晓艳.Zn^(2+)掺杂对锂离子电池正极材料LiFePO_4性能的影响[J].金属功能材料,2008,15(6):26-29. 被引量:5
  • 8许俊,姚寿山.LOW-E薄膜光学性能的计算机辅助模拟[J].金属功能材料,2002,9(2):21-25. 被引量:1
  • 9Zhou R H,Huang X H,et al.Hydrophobic collapse in multidomain protein folding nJ].Science 2004,305(5690):1605-1609.
  • 10Shi Siqi,Liu Lijun,et al.Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations[J].Physical Review B,2003,68(19):195108.

二级参考文献23

  • 1文衍宣,郑绵平,童张法,粟海锋,薛敏华.镍离子掺杂对LiFePO_4结构和性能的影响[J].中国有色金属学报,2005,15(9):1436-1440. 被引量:17
  • 2胡环宇,仇卫华,李发喜,赵海雷,王碧燕.Mg掺杂对LiFePO_4材料电化学性能的影响[J].电源技术,2006,30(1):18-20. 被引量:15
  • 3唐红辉,戴曦,张传福,杨平.Ni^(2+)掺杂LiFePO_4正极材料的合成及性能[J].粉末冶金材料科学与工程,2006,11(4):244-248. 被引量:10
  • 4Xu Y N , Chung S Y, et al. Electronic structure and electrical conductivity of undoped LiFePO4 [J] . Electrochemical and Solid --State Letters , 2004 ,7 (6) : A131.
  • 5Yamada A, Chung S C. Crystal chemistry of the olivine--type Li (MnyFel-y)PO4 as possible 4V cathode materials for lithium batteries[J]. J EIeetrochem Soc, 2001, 148 (8) :A960.
  • 6Yamada A, Kudo Y, Liu K Y. Phase diagram of Li (MnyFe1-y) PO4 [J]. J Electrochem Soc, 2001, 148 (10): A1153.
  • 7Penazzi N, Arrabito M, et al. Mixed lithium phosphates as cathode materials for Li--ion cells [J]. J Eur Ceram Soc, 2004, 24 (6) :A1381.
  • 8Wang D Y, Li H, et al. Improving the rate performance of LiFePO4 by Fe --site doping [J].Electrochem Acta, 2005, 50 (14): 2955.
  • 9Barker J, SaidiM Y, Swoyer J L. Lithium iron phosphorolivines prepared by a novel carbothermal reduction method [J]. Electrochem Solid--State Lett, 2003, 6 (3); A53.
  • 10Ni J F, Zhou H H, et al. LiFePO4 doped with ions prepared by co--precipitation method[J]. Mater Lett, 2005, 59 (18) : A2361.

共引文献4

同被引文献18

  • 1Padhi A K. Nanjundaswamy K S. Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Electrochem Soc.1997 .144( 4) : 1188.
  • 2Murugan A V. Manthiram A. Rapid facile microwave-solvothermal synthesis of grapheme nanosheets and their polya niline nanocomposites for energy strorage [J]. Chem Mater. 2009.21(21):5004.
  • 3Fisher C A J. Hart P V M. Islam M S. Lithium battery materials LiMP04(M=Mn.Fe.Co.and Ni ) , Insights into defect association. transport mechanisms. and doping behavior [J]. Chem Mater. 2008. 20(8) :5907.
  • 4Ravet N. Gauthier M. Zaghib K. et al. Mechanism of the Fe^3+ reducion at low temperature for LiFePO4 sythesis from a polymeric additive[J]. Chem Mater. 2007.19: 2595.
  • 5Thuckeray M. Lithium-ion batteries: An unexpected conductor[J]. Nat Mater.2002.1(2) :81.
  • 6Prosini P P. Lisi M. Zane D. et al. Determination of the chemical diffusion coefficient of lithium in LiFeP01 [J]. Solid State Ionics , 2002, 148(1- 2) : 45.
  • 7Mi C H. Cao Y X. Zhang X G. et al. Synthesis and characterization of LiFePO4/( Ag + C) composite cathodes with nano-carbon webs[J]. Powder Techn.2008 .181 (3): 301.
  • 8Wang S P. et al. Preparation of LiFePO4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose[J]. J Power Sources. 2011.196(1) : 5143.
  • 9Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat Mater,2002.1(2):123.
  • 10Andersson A S, et al. The source of first-cycle capacity loss in LiFePO4[J]. J Power Sources,2011,97-98:498.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部