期刊文献+

随机环境下非线性时间序列模型的渐近行为 被引量:1

The Asymptotic Behavior of Nonlinear Time Series Model under the Random Environment
下载PDF
导出
摘要 推广了广泛用于金融经济领域的自回归条件异方差模型,提出了随机环境下的幂变换门限自回归条件异方差模型.新模型通过引入有限状态马氏链,增加了环境突变对模型的影响,使得模型具有了更为广泛的适应性.同时,得出了随机环境下的幂变换门限自回归条件异方差模型以几何速率收敛的充分条件. The article proposes the power transformed threshold autoregressive conditional heteroskedastic model under the random environment which is the generalization of autoregressive conditional heteroskedastic model.By finite state Markov chain,the influence of the sudden change to the environment is promoted in the new modle,which makes the new model more flexible.Meanwhile,some sufficient conditions for convergence are obtained.
出处 《江西理工大学学报》 CAS 2011年第1期78-80,共3页 Journal of Jiangxi University of Science and Technology
关键词 马氏链 随机环境 几何遍历 非线性时间序列模型 markov chains random environment geometric ergodicity nonlinear time series models
  • 相关文献

参考文献6

  • 1Hwang S Y,Mi-Ja Woo.Threshold ARCH(1)Processes:Asymptotic Inference[J].Statistics & Probability Letters,2001,53:11-20.
  • 2Hwang S Y,Tae Yoon Kim.Power Transformation and Threshold Modeling for ARCH Innovations with Applications to Test for ARCH Sructure[J].Stochastic Processes and their Applications,2004,110:295-314.
  • 3Hwang S Y,Basawa I V.Stationarity and Moment Structure for BoxCox Transformed Threshold GARCH (1.1)Processes[J].Statistics & Probability Letters,2004,68:209-220.
  • 4Paternoster B,Shaikhet L.Application of the General Method of Lyapunov Functionals Construction for Difference Volterra Equations[J].Comp Math Appl,2004,47:1165-1176.
  • 5Paternoster B,Shaikhet L.About Stability of Nonlinear Stochastic Difference Equations[J].Applied Mathematics Letters,2000,13:27-32.
  • 6Hou Z T,Yu Z,Shi P.Study on a Class of Nonlinear Time Series Models and Ergodicity in Random Environment Domain[J].Mathematical Methods of Operations Research,2005,61:299-310.

同被引文献14

  • 1Robert F Engle. Autore.essive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4):987-1008.
  • 2Milan Borkovec. Asymptotic behavior of the sample auto covariance and auto correlation function of the AR (1) process with ARCH(1)[J]. Bernoulli, 2001, 7(6): 847-872.
  • 3Borkovec M, Kltlppelberg C. The tail of the stationary distribution of an autoregressive process with ARCH(l) errors []]. Annals of Applied Probability, 2001, 11(4): 1220-1241.
  • 4Federico M Bandi, Peter C B Phillips. Fully nonparametric estimation of scalar diffusion models[J]. Econometrics, 2003, 71 (1): 241-283.
  • 5Bernt q)ksendal. Stochastic differential equations: An introduction with applications[M]. New York :Springer, 2005.
  • 6Wang Y Y, Zhang L X. Tang M T. Re-weighted functional estimation of second-order diffusion processes[J]. Metrika, 2011, 75 (8) : 1129- 1151.
  • 7Dag Tjq.theim. Nonlinear time series: a selective revie w[J]. Seandinvian Journal of Statistics, 1994, 21 (2) : 97-130.
  • 8Owen A B. Empirical likelihood [M]. London :Chapman & Hall, 2001.
  • 9Qin J, Lawless J. Empirical likelihood and general estimation equations[J]. The Annals of Statistics, 1994, 22(1): 300-325.
  • 10Art Owen. Empirical likelihood ratio confidence regions [J]. The Annals of Statistics, 1990, 18(1):90-120.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部