期刊文献+

探索最值问题的几种解法 被引量:1

下载PDF
导出
摘要 下面笔者就所谓的最值问题的解决方法进行探索总结. 一、构造二次方程法 例1已知x、y为实数,且满足x+y+m=5,xy+ym+mx=3,求实数m的最值.解由条件等式得x+y=5-m,xy=3-m(x+3)=3-m(5-m)=m2-5m+3.所以x、y是方程x2-(5-m)z+(m2-5m+)3=0的两个实数根.所以△=[-(5-m)]2-4(m2-5m+3)≥0,
作者 陈芳铭
出处 《数理化解题研究(初中版)》 2011年第3期18-19,共2页
  • 相关文献

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部