期刊文献+

两阶段模糊运输期望值模型及其逼近方法

A Two-stage Fuzzy Transportation Expected Value Model and Its Approximation Approach
原文传递
导出
摘要 基于可信性理论和两阶段模糊优化方法,提出一类带有模糊参数的两阶段运输期望值模型。由于提出运输问题包含带有无限支撑的模糊变量系数,因此它是一个无限维的优化问题。然后,讨论两阶段模糊运输期望值问题的逼近方法并且将逼近方法嵌套到遗传算法中产生一个基于遗传算法的逼近方法求解提出的两阶段模糊运输期望值问题。最后,给出一个数值例子来表明所设计模型和算法的实用性与有效性。 Based on credibility theory and two-stage fuzzy optimization method, this paper will present aclass of two-stage transportation expected value model with fuzzy parameters, Since the propsed transportation peoblem includes fuzzy variable coefficients with infinite supports in this paper, it is infinite- dimensional optimization problem. Then approximation approach of two-stage fuzzy transportation expected value problem is discussed and embeded into a genetic algorithm to produce an approximation based genetic algorithm for solving the proposed two-stage fuzzy transportation expected value problem. Finally, a numerical example is given to show the practicality and effectiveness of the designed model and algorithm.
出处 《模糊系统与数学》 CSCD 北大核心 2011年第1期167-174,共8页 Fuzzy Systems and Mathematics
基金 河北省高等学校自然科学研究青年基金资助项目(2010124) 河北省科学技术研究与发展计划项目(104572113)
关键词 运输期望值模型 可信性理论 两阶段模糊优化 逼近方法 遗传算法 Transportation Expected Value Model Credibility Theory Two-stage Fuzzy Optimization Approximation Approach Genetic Algorithm
  • 相关文献

参考文献20

  • 1Leon C.The stochastic transportation-location problem[J].Computers and Mathematics with Applications,1978,4:265-275.
  • 2Angela D F,Nicola S.On modelling urban transportation networks via hybrid Petri nets[J].Control Engineering Practice,2004,12:1225-1239.
  • 3Liu C Z,Fan Y Y,Fernando O.A two-stage stochastic programming model for transportation network protection[J].Computers and Operations Research,2009,36:1582-1590.
  • 4Zadeh L A.Fuzzy sets[J].Information and Control,1965,8:338-353.
  • 5Zadeh L A.Fuzzy sets as a basis for a theory of possibility[J].Fuzzy Sets and Systems,1978,1:3-28.
  • 6Wang P.Fuzzy contactability and fuzzy variables[J].Fuzzy Sets and Systems,1982,8:81-92.
  • 7Nahmias S.Fuzzy variables[J].Fuzzy Sets and Systems,1978,1:97-101.
  • 8Stefan C,Dorota K.Fuzzy integer transportation problem[J].Fuzzy Sets and Systems,1998,98:291-298.
  • 9Shih L-H.Cement transportation planning via fuzzy linear programming[J].International Journal of Production Economics,1999,58,277-287.
  • 10Waiel F,Abd E-W,Sang M L.Interactive fuzzy goal programming for multi-objective transportation problems[J].Omega,2006,34:158-166.

二级参考文献47

  • 1Whybark D C, Williams J G. Material requirements planning under uncertainty[J]. Decision Science,1976,7:595- 606.
  • 2Yao J S, Lee H M. Fuzzy inventory with hackorder for fuzzy order quantity[J]. Information Science, 1996,93,283-319.
  • 3Lin D C, Yao J S. Fuzzy economic production for production inventory[J]. Fuzzy Sets and Systems, 2000,111:465-495.
  • 4Wong T N, Leung C W, Mak K L, Fung R Y K. Dynamic shopfloor scheduling multi-agent manufacturing systems [J]. Expert Systems with Applications,2006,31:486-494.
  • 5Hodges S D, Moore G. The product-mix problem under stochastic seasonal demand[J]. Management Science, 1970, 17(2):B107-B114.
  • 6Bakir M A, Byrne M D. Stochastic linear optimisation of an MPMP production planning model[J]. International Journal of Production Economics, 1998,55 : 87 - 96.
  • 7Bellman R E, Zadeh L A. Decision-making in a fuzzy environment[J]. Management Science, 1970,17:141-164.
  • 8Shih L H. Cement transportation planning via fuzzy linear programming[J]. Interantional Journal of Production Economics, 1999,58 : 277-287.
  • 9Wang R C, Fang H H. Aggregate production planning with multiple objectivesin a fuzzy environment[J]. European Journal of Operational Research, 2001,133 : 521-536.
  • 10Wang R C,Liang T F. Applying possibilistie linear programming to aggregate production planning[J]. Interantional Journal of Production Economics, 2005,98 : 328 - 341.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部