期刊文献+

基于转移学习的命名实体挖掘技术 被引量:3

A Named Entity Mining Method Based on Transfer Learning
下载PDF
导出
摘要 研究了针对大规模查询日志中丰富的命名实体的挖掘技术,通过利用Wikipedia数据,结合转移学习方法构建目标类别的分类器.该技术很好地利用了监督学习的优越性能以提高查询日志中命名实体挖掘的准确性,同时也解决了监督学习方法中大规模标注的问题.实验结果表明,基于转移学习的命名实体挖掘技术具有优越的命名实体挖掘性能. This paper addresses the problem of mining named entities from query logs.A novel scheme was introduced based on transfer learning,which trains classifier for target category by leveraging Wikipedia data source.In this way it can greatly make use of supervised learning and also deal with the large scale(labeling) problem.The experiment results show the effectiveness of the novel scheme based on transfer learning.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第2期164-167,共4页 Journal of Shanghai Jiaotong University
关键词 转移学习 命名实体挖掘 正例学习 transfer learning named entity mining one class learning
  • 相关文献

参考文献6

  • 1Andrew B, John S, Eugene A, et al. NYU: Descrip- tion of the MENE named entity system as used in MUC-7[EB/OL]. (2001-01-12) [2010-01-26]. ht- tp://www. itl. nist. gov/iaui/894. 02/related _ pro- jects/muc/ proceedings/muc_7_toc.html.
  • 2Alessandro C, Velardi P. Unsupervised named entity recognition using syntactic and semantic contextual ev- idence[J]. Computational Linguistics, 2001, 27 (1) : 123-131.
  • 3Richard E. A framework for named entity recognition in the Open Domain[C]//Proc Recent Advances in Nat- ural Language Processing. Philadelphia : John Benjamins Publishing Company, 2003: 267-276.
  • 4Pasea M. Weakly-supervised discovery of named enti- ties using web search queries[C]//CIKM 07: Proceed- ings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management. New York: ACM, 2007: 683-690.
  • 5Chang Chih-chung, Lin Chih-jen. LIBSVM : A librar- y for support vector machines[CP/OL]. (2001-09-13) [2010-02-06]. http://www. csie. ntu. edu. tw/-cjlin/ libsvm.
  • 6翟海军,郭嘉丰,王小磊,等.基于用户查询日志的命名实体挖掘[C]//全国第十届计算语言学学术会议.烟台:中文信息学会,2009:563-569.

同被引文献23

  • 1GUO J F,XU G,CHENG X Q. Named entity recognition in query[A].2009.267-274.
  • 2PASCA M. Organizing and searching the World Wide Web of facts? Step two:Harnessing the Wisdom of the Crowds[A].2007.101-110.
  • 3PASCA M. Weakly-supervised discovery of named entities using Web search queries[A].2007.683-690.
  • 4XU G,YANG S H,LI H. Named entity mining from click-through data using weakly supervised latent Dirichlet Allocation[A].2009.1365-1374.
  • 5张磊;王斌;靖红芳.中文网页搜索日志中的特殊命名实体挖掘[A],2009.
  • 6CHINCHOR N. MUC-7 named entity task definition[A].1998.
  • 7CNNIC.第34次中国互联网络发展状况统计报告[R]. 2014.
  • 8Du J, Zhang Z, Yan J, et al. Using Search Session Context for Named Entity Recognition in Query[C]. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2010: 765-766.
  • 9Jonnalagadda S, Cohen T, Wu S, et al. Using Empirically Constructed Lexical Resources for Named Entity Recognition [J]. Biomedical Informatics Insights, 2013, 6(1): 17-27.
  • 10Gross O, Doucet A, Toivonen H. Named Entity Filtering Based on Concept Association Graphs [C]. In: Proceedings of the 14th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing), Samos, Greece. 2013.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部