期刊文献+

一种基于空-时快速鲁棒特征的视频词汇的人行为识别方法 被引量:1

Action Recognition Based on Video Words with a Space-Time Speeded up Robust Features Descriptor
下载PDF
导出
摘要 提出了一种空-时快速鲁棒特征(SURF)描述子,并且结合视频词汇概念,应用于人行为识别.这种新的描述子在行为识别应用中能很好地体现视频的时空本质,通过词袋(Bag of Words)模型来表征视频,且在表征过程使用了非硬性权重.实验以瑞典皇家理工学院的行为识别数据集作为测试对象,使用了相关领域传统的分类策略,同时引入了包含二次判断的投票系统.实验结果证明,结合特征描述子和视频词汇的行为识别框架在速度和准确率上均优于已有的一些方法,同时该分类策略在某些行为类型上优于传统的分类方法,能有效地应用于行为识别领域. A novel space-time speeded up robust features(SURF) descriptor and its application to human action recognition by combining with a bag of video words approach were presented.The new descriptor can better represent the spatio-temporal nature of the video data in the application of action recognition.A bag of words approach is used to represent videos,and a soft weighting strategy is exploited.Experiment is done in the KTH's action recognition dataset.In the experiment a voting system containing second pass prediction is employed in classifying actions as well as the traditional classification framework.The results of experiment show this approach is able to outperform the previously proposed schema both in speed and accuracy,while the new voting schema works better than the traditional one in some actions.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第2期225-229,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(61071153 60802057) 上海市青年科技启明星计划(10QA1403700)资助项目
关键词 空-时快速鲁棒特征 行为识别 视频词汇 space-time speeded up robust features(SURF) action recognition video words
  • 相关文献

参考文献8

  • 1Ali S, Shah M. Human action recognition in videos using kinematic features and multiple instanee learning [J]. IEEE Pattern Analysis and Machine Intelligence, 2010, 32(2) :288-303.
  • 2Lin Guang-feng, Fan Yin-di, Zhang Er-hu, etal. Hu- man action recognition using latent-dynamic condition random fields[J]. Artifieial Intelligenee and Computa-tional Intelligence, 2009,3(7) :147-151.
  • 3Li Xi, Fukui K. View invariant human action recogni- tionbased on factorization and HMMs [J]. IEICE Transactions on Information and Systems, 2008, E91-D (7): 1848-1854.
  • 4Scovaner P, Ali S, Shah M, et al. A 3-dimensional sift descriptor and its application to action recognition [C]//Proceedings of the 15th International Conference on Multimedia. New York, USA: ACM, 2007: 357- 360.
  • 5Herbert B, Andreas E, Tuytelaars T, et al. Speeded- up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008. 110 ( 3 ) : 346- 359.
  • 6Koksal F, Alpaydin E, Dundar G, et al. Weight quantization for multi-layer perceptrons using soft weight sharing [C]//Proceedings of the International Conference on Artificial 2001. London, UK:Springer- Verlag, 2001:211-216.
  • 7Juan Carlos N, Wang Hong-cheng, Li Fei-fei, et al. Unsupervised learning of human action categories using spatial-temporal words [J].International Journal of Computer Vision, 2008,79(3) : 299-318.
  • 8Lowe D G. Distinctive image features from scale-in- variant keypoints[J]. International Journal of Comput- er Vision, 2004,60(2):91-110.

同被引文献13

  • 1刘懿,王敏.基于时空域3D-SIFT算子的动作识别[J].华中科技大学学报(自然科学版),2011,39(S2):134-136. 被引量:3
  • 2Hu Y, Zheng W. Human action recognition based on keyframes[C] //Proceedings of Conference on Computer Scienceand Education. Heidelberg: Springer, 2011: 535-542.
  • 3Aoun B N, Mejdoub M, Amar C B. Graph-based approach forhuman action recognition using spatio-temporal features[J].Journal of Visual Communication and Image Representation.2014, 25: 329-338.
  • 4Mozafari K, Charkari N M, Boroujeni H S, et al. A novel fuzzyHMM approach for human action recognition in video[C]//Proceedings of the 3rd Knowledge Technology Week. Heidelberg:Springer, 2012: 184-193.
  • 5Zhao D J, Shao L, Zhen X T, et al. Combining appearance andstructural features for human action recognition[J]. Neurocomputing2013, 113: 88-96.
  • 6Gong W J, Bagdanov A D, Xavier Roca F, et al. Automatic keypose selection for 3D human action recognition[M] //LectureNotes in Computer Science. Heidelberg: Springer, 2010, 6169:290-299.
  • 7Devanne M, Wannous H, Berretti S, et al. Space-time pose representationfor 3D human action recognition[M] //LectureNotes in Computer Science. Heidelberg: Springer, 2013, 8158:456-464.
  • 8Hahn M, Krüger L, W-hler C. 3D action recognition andlong-term prediction of human motion[M] //Lecture Notes inComputer Science. Heidelberg: Springer, 2008, 5008: 23-32.
  • 9杨跃东,郝爱民,褚庆军,赵沁平,王莉莉.基于动作图的视角无关动作识别[J].软件学报,2009,20(10):2679-2691. 被引量:5
  • 10田国会,吉艳青,黄彬.基于多特征融合的人体动作识别[J].山东大学学报(工学版),2009,39(5):43-47. 被引量:11

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部