期刊文献+

局域极端学习机及其在状态在线监测中的应用 被引量:12

Local Extreme Learning Machine and Its Application to Condition On-line Monitoring
下载PDF
导出
摘要 针对训练样本贯序输入时的极端学习机(ELM)训练问题,提出一种可实现在线训练的局域极端学习机(LELM).LELM以逐次增样训练与减样训练的方式实现在线训练,从而有效保持了简约的模型结构,同时利用分块矩阵求逆引理有效减小了多次模型训练的计算代价.混沌时间序列在线预测仿真表明,LELM的在线训练时间远小于ELM,且预测精度更高.基于时间序列预测的雷达发射机状态在线监测实例表明,相比于利用粒子群优化的自适应灰色模型方法,LELM具有更高的计算效率与预测精度,适用于电子系统状态在线监测. To reduce the computational cost of extreme learning machine(ELM) on-line training,a new algorithm called local extreme learning machine(LELM) was proposed. LELM adopts the latest training sample and abandons the oldest training sample iteratively to insure that only the most relevant samples are applied to LELM on-line training.The output weights of LELM are determined recursively during each training procedure to reduce the computational cost of on-line training.The numerical experiments on chaotic time series prediction indicate that the on-line training computational cost of LELM is much less than that of ELM.The numerical experiments on radar transmitter condition on-line monitoring based on time series prediction indicate that LELM has better performance in on-line training computational cost and prediction accuracy in comparison with conventional electronic system condition on-line monitoring method(using) adaptive grey model.
作者 张弦 王宏力
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第2期236-240,共5页 Journal of Shanghai Jiaotong University
关键词 极端学习机 在线训练 电子系统 时间序列预测 状态监测 extreme learning machine on-line training electronic system time series prediction condition monitoring
  • 相关文献

参考文献16

  • 1Goel A, Graves R J , Electronic system reliability: Collating prediction models [J]. IEEE Transactions on Device and Materials Reliability, 2006, 6 (2): 258- 265.
  • 2Parry J D, Rantala J, Lasance C J M. Enhanced elec- tronic system reliability challenges for temperature prediction [J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(4) : 533-538.
  • 3Huang G B, Zhu Q Y, Siew C K. Extreme learning machine : Theory and applications[J]. Neurocomput- ing, 2006, 70(1-3) : 489-501.
  • 4Huang G B, Chen L. Enhanced random search based incremental extreme learning machine [J]. Neurocom- puting, 2008, 71(16-18): 3460 - 3468.
  • 5Chen L, Zhou L F, Pung H K. No-reference image quality assessment using modified extreme learning machine classifier [J]. Applied Soft Computing, 2009, 9(2) :541-552.
  • 6Feng G, Huang G B, Lin Q P, etal. Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J]. IEEE Transactions on Neural Networks, 2009, 20(8): 1352- 1357.
  • 7Tang X L, Han M. Partial Lanczos extreme learning machine for single-output regression problems [J]. Neuroeomputing, 2009,72 ( 13-15 ) : 3066-3076.
  • 8Liu N, Wang H. Ensemble based extreme learning machine[J]. IEEE Signal Processing Letters, 2010, 17 (8) :754-757.
  • 9Lan Y, Soh C Y, Huang G B. Constructive hidden nodes selection of extreme learning machine for re-gression[J]. Neuroeomputing, 2010, 73 ( 16-18): 3191-3199.
  • 10Minhas R, Mohammed A A, Wu Q M J. A fast rec- ognition framework based on extreme learning machine using hybrid object information [J]. Neurocomputing, 2010, 73(10-12) :1831-1839.

共引文献36

同被引文献120

引证文献12

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部