摘要
利用2002年10月1日至2008年3月31日青海省MODIS/Terra-Aqua每日雪被产品(MOD10A1、MYD10A1)和AMSR-E/Aqua每日雪水当量产品,研究了MODIS和AMSR-E旬数据的融合算法,合成了AMSR-E旬积雪分类图像(AE_10D)、MODIS旬积雪分类图像(MOYD_10D)及二者再次合成的旬积雪分类图像MDAE_10D;结合气象台站的雪情数据,对比分析这3种图像的分类精度.结果表明:合成的AE_10D,因受空间分辨率等因素影响,当积雪深度在4cm以上时,积雪分类精度(Sa)仅为48.44%,总精度(Oa)为55.43%;积雪深度对MOYD_10D图像的分类精度有较大影响.MOYD_10D图像对浅层的积雪识别率不高,当雪深在1~3cm时,Sa仅为20.63%;当积雪深度在4cm以上时,Sa为53.56%,Oa为93.54%;当雪深≥11cm时,Sa为88.57%.旬合成图像MDAE_10D在雪深为1~3cm时Sa为20.86%,当雪深在4cm以上时,Sa随雪深的增加而最大,Sa达到59.28%,Oa为93.66%;当雪深≥11cm时,Sa达到最高91.43%.由于MDAE_10D图像结合了AE_10D和MOYD_10D的特点,Sa和Oa均有提高.因此,该合成图像在牧区雪灾监测及评价等方面具有重要的作用和意义.
By use of MODIS/Terra-Aqua daily snow cover products(MOD10A1,MYD10A1) and AMSR/Aqua daily snow water equivalent from October 1,2002 to March 31,2008 in Qinghai province,the ten-days composite algorithms of MODIS and AMSR-E data were studied,and the snow classification images of MOYD_10D,AE_10D and MDAE_10D were composed during the study period.The classification accuracies of the three kinds of images were analyzed using climate station data.The results showed that: 1) when the snow depth is more than 4 cm,snow classification accuracy(Sa) of AE_10D is only 48.44%,and overall accuracy(Oa) is 55.43%;2) Snow classification accuracy of MOYD_10D is seriously influenced by snow depth.When snow depth is between 1 and 3 cm,the classification accuracy is low,with Sa of 20.63% merely.While snow depth is more than 4 cm,Sa is 53.56%,and Oa is 93.54%.When snow depth is more than 11cm,Sa is 88.57%;and 3) For MDAE_10D image,Sa is 20.86% when snow depth is less than 3 cm.Sa increases with increase of snow depth.When the depth is over 4 cm,Sa will reaches 59.28%,and Oa will reaches 93.66%.When snow depth is more than 11 cm,Sa reaches to the maximum value of 91.43%.For MDAE_10D,which has the characteristics of AE_10D and MOYD_10D,the Sa and Oa are improved.Accordingly,MDAE_10D has an evident role in snow disaster monitoring and evaluating in pastoral areas.
出处
《冰川冻土》
CSCD
北大核心
2011年第1期88-100,共13页
Journal of Glaciology and Geocryology
基金
教育部科技创新工程重大项目培育项目(708089)
国家高技术研究发展专项(2007AA10Z232)
国家科技支撑计划项目(2009BAC53B01)资助