期刊文献+

增量式最小二乘法分类器与增量式支持向量机的对比 被引量:3

Incremental Least Squares Classifier vs.Incremental Proximal Support Vector Machine
下载PDF
导出
摘要 在处理大规模数据时,近似支持向量机及其增量式版本(ISVM)是一种比传统支持向量机更加简单而有效的分类器.但在处理高维数据时,由于ISVM通过计算矩阵的逆来更新模型参数,这使得其计算效果有待提高.针对上述问题,本文提出了基于最小二乘法的增量式方法.该增量式方法通过对矩阵运算的恒等推导,把矩阵求逆问题转变成了除法运算,得到了简单的模型参数更新公式,从而获得了和ISVM同样的预测精度,且在处理高维数据时运行效率更高.在合成数据及图像和生物数据上的试验表明该增量式方法优于ISVM方法. Proximal support vector machine (PSVM) and its incremental version( ISVM) are much simple but more effective classifiers than traditional support vector machines ( SVMs), for dealing with large volume data. Nevertheless, the computational efficiency of the ISVM for high dimensional data is still unsatisfactory, mainly because that it requires explicit matrix inversion for updating model parameter. In this paper, we propose an incremental solution which relies on least squares to get identical prediction accuracy to that of ISVM, but is more efficient for high dimensional data. More specifically, we solve incremental least squares problem by identically transforming the matrix inversion into simple division operation, and obtain simple formulas of model updating. Experimental results on synthetic and real-world ( image and biological data) confirm that the proposed incremental classifier obtains the same pre- diction accuracy as that of the ISVM, moreover, the proposed method performs much better than ISVM for high dimensional data.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第3期493-498,共6页 Journal of Chinese Computer Systems
基金 国家"九七三"重点基础研究发展计划项目(2010CB327906)资助 国家自然科学基金项目(60873178 60875003)资助 上海市研究与发展基金项目(08511500902)资助
关键词 监督学习 增量式学习 增量式近似支持向量机 高维 增量式最小二乘法 supervised learning incremental learning incremental proximal support vector machine high dimensionality incremen-tal least squares
  • 相关文献

参考文献25

  • 1Cauwenberghs G, Poggio T. Incremental and decremental support vector machines learning[ C]. In: Advances in Neural Information Processing Systems, Cambridge, 2001,409-415.
  • 2Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization [ J ]. Nature, 1999,401 (6755) :788-791.
  • 3Kerrthi S, Chapelle O, DeCoste D. Building support vector machines with reduced classifier complexity[ J]. Journal of Machine Learning Research, 2006,7 : 1493-1515.
  • 4Rifkin R, Yeo G, Poggio T. Regularized least-squares classification[ C]. In: Advances in Learning Theory: Methods, Model and Applications, 2003,131-153.
  • 5Tan C P, Lani N F M, Lai W K. Application of support vector machine classifier for security surveillance system [ C ]. In: Proceedings of the 4th lASTED International Conference on Advances in Computer Science and Technology, 2008.
  • 6Musicant D R. NDC: normally distributed clustered datasets[ EB/ OL]. http://www, cs. wisc. edu/- musieant/data/nde/, 1998.
  • 7Lawson C L, Hanson R J. Solving least squares problems[ M]. Englewood Cliffs, New Jersey: Prentice Hall, 1974.
  • 8Bentounsi H, Batouche M. Incremental support vector machines for hand-written Arabic character recognition[ C ]. In: Proceedings of the 1st IEEE International Conference on Information and Communication Technologies: From Theory to Applications, 2004,477- 478.
  • 9Hmeidia I, Hawashina B, El-Qawasmeh E. Performance of KNN and SVM classifiers on full word Arabic articles [ J ]. Advanced Engineering Informatics, 2008,22 ( 1 ) : 106 - 111.
  • 10Tan S B, Zhang J. An empirical study of sentiment analysis for Chinese documents[ J]. Expert Systems with Applications, 2008, 34 (4) :2622 -2629.

二级参考文献20

  • 1唐焕文,张立卫,王雪华.一类约束不可微优化问题的极大熵方法[J].计算数学,1993,15(3):268-275. 被引量:75
  • 2唐焕文,张立卫.凸规划的极大熵方法[J].科学通报,1994,39(8):682-684. 被引量:49
  • 3李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 4Gunn S R.Support vector machines for classification and regression[EB/OL].http://www.ecs.soton.ac.uk/~srg/publications/pdf/SVM.pdf,1998.
  • 5Duda R O,Hart P E,Stork D G.Pattern classification[M].2nd Edition.John Wiley and Sons,Inc.2001.
  • 6Vapnik V.The nature of statistical learning theory[M].Springer-Verlag,1995.
  • 7Vapnik V.Statistical learning theory[M].John Wiley and Sons,Inc.,1998.
  • 8Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
  • 9Burges J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 10Shawe-Taylor J,Cristianini N.Kernel methods for pattern analysis[M].Cambridge University Press,2004.

共引文献373

同被引文献7

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部