2Z. Pawlak. Rough sets -theoretical aspects of reasoning about data[ M ]. Netherland: Kluwer Academic Publishers, 1991.
3Z. Pawlak, A. Skowron. Rough sets: some extensions [J]. Information Sciences, 2007, 177:28-40.
4X. B. Yang, Y. S. Qi, X. N. Song, J. Y. Yang. Test cost sensitive muhigranulatiion rough set: model and minimal cost selection [J]. Information Sciences, 2013, 250: 184- 199.
5D. Dun, T. R. Li, J. B. Zhang. A rough set -based incremental approach for learning knowledge in dynamic incomplete information systems [ J]. International Journal of Approximate Reasoning, 2014, 55 : 1764 - 1786.
6X. H. Zhang, J. H. Dai, Y. C. Yu. On the union and intersection operations of rough sets based on various approximation spaces [ J]. Information Sciences, 2015, 292 : 214 - 229.
7S. P. Wang, Q. x. Zhu, W. Zhu, F Min. Graph and matrix approaches to rough sets through matroids [J]. Information Sciences, 2014, 288 : 1 - 11.
8D. Liu, T. Li, J. Zhang, Incremental updating approximations in probabilistic rough sets under the variation of attributes, Knowledge - Based Systems (2014), doi : http ://dx. doi. org/10. 1016/j. knosys.
9T. Mollestad, A. Skowron. A rough set framework f or data mining of propositional default rules[ A]. Foundations o f In- telligent Systems of the 9th International Symposium [ C]. Zakopane, Poland, 1996.
10Y. H. Qian, J. Y. Liang, P. Song, C. Y. Dang, W. Wei. Evaluation of the decision performance of the decision rnle set from an ordered decision table [J]. Knowledge- based Systems, 2012, 36:39 -50.