期刊文献+

冷却工艺对低焊接裂纹敏感性钢组织的影响 被引量:1

Effect of Cooling Technology on Microstructure of Low Welding Crack Susceptibility Steel
原文传递
导出
摘要 采用弛豫控制析出+加速冷却(RPC+ACC)和超快速冷却+加速冷却(UFC+ACC)2种不同冷却工艺试制低裂纹敏感性钢板,结合显微硬度、SEM及TEM技术分析了冷却工艺对显微组织及力学性能的影响。结果表明:RPC+ACC工艺试样的屈服强度和抗拉强度比UFC+ACC工艺高170 MPa和65 MPa,而且维持了相同的冲击韧性。获得含有大量位错胞的板条贝氏体组织,且不同尺寸的板条贝氏体被亚结构或位错墙分割,出现相互交错排列是RPC+ACC冷却工艺提高强度的主要机制。 Two different cooling processes,namely,relaxation-precipitation-control phase transformation+acceleration cooling(RPC+ACC) and ultra fast cooling+acceleration cooling(UFC+ACC) were used to produce low welding crack susceptibility steel.The effects of these cooling processes on microstructure and mechanical properties were analyzed by means of microhardness,SEM and TEM.The results showed that the yield strength and tensile strength of the RPC+ACC samples were 170MPa and 65MPa more than that of the UFC+ACC samples respectively,and kept the same toughness.The main strengthening mechanism of the RPC+ACC process was that lath bainite ferrite was refined by recovery of dislocation and the form of substructure,and fine lath bainite ferrites staggering arrangement and including high density dislocation were obtained by acceleration cooling.
出处 《中国冶金》 CAS 2011年第2期29-33,共5页 China Metallurgy
基金 国家自然科学基金资助项目(50474015)
关键词 低焊接裂纹敏感性钢 冷却工艺 板条贝氏体 MA组元 low welding crack susceptibility steel cooling process lath bainite MA constituent
  • 相关文献

参考文献11

  • 1Fujiwara K, Okaguchi S, Ohtani H. Effect of Hot Deformation on Bainite Structure in Low Carbon Steels[J]. ISIJ Int, 1995, 35: 1006.
  • 2Lucas A, Simon P, Bourdon G,et al. Metallurgical Aspects of Ultra Fast Cooling in Front of the Down-Coiler[J]. Steel Research International, 2004, 75:139.
  • 3王学敏,尚成嘉,杨善武,贺信莱.组织细化的控制相变技术机理研究[J].金属学报,2002,38(6):661-666. 被引量:45
  • 4尚成嘉,王学敏,杨善武,贺信莱,武会宾.高强度低碳贝氏体钢的工艺与组织细化[J].金属学报,2003,39(10):1019-1024. 被引量:113
  • 5Xiao F R, Liao B, Shan Y Y, et al. Challenge of Mechanical Properties of an Acicular Ferrite Pipeline Steel[J].Mater Sci Eng A, 2006, A431: 41.
  • 6Cota A B, Barbosa R, Santos D B. Simulation of the Con trolled Rolling and Accelerated Cooling of a Bainitic Steel U sing Torsion Testing[J]. J Mater Process Technol, 2000 100: 156.
  • 7Lepera F S. Improved Etching Technique to Emphasize Martensite and Bainite in High Strength Dual-Phase Steel [J]. Journal of Metals, 1980, 32(3): 38.
  • 8Biss V, Cryderman R L. Martensite and Retained Austenite in Hot-Rolled Low-Carbon Bainitic Steels[J]. Metall Mater Trans B, 1971, 2(8): 2267.
  • 9Tian D W, Karjalainen L P, Qian B N, et al. Cleavage Fracture Model for Granular Bainite in Simulated Coarse-Grained Heat-Affected Zones of High-Strength Low-Alloyed Steels[J]. The Japan Society of Mechanical Engineers International, 1997, 40: 179.
  • 10Bhadeshia H K D H, Christian J W. Bainite in Steels[J].Metall Trans A, 1990, 21A: 767.

二级参考文献23

  • 1[1]Maki T. In: Taylor K A, Thompson S W, Fletched F B eds, Physical Metallurgy of Direct-Quenched Steels, Warrendale: TMS, 1993:3
  • 2[2]Tomoya K, Keniti A, Makoto T. In: Taylor K A, Thompson S W, Fletched F Beds, Physical metallurgy of directquenched steels, Warrendale: TMS, 1993:297
  • 3[3]Ernest J Czyryca, Richard E Link. Naval Eng J, May 1990:63
  • 4[4]Shang C, Yang S, Yuan Y, He X. Thermec' 2000, NorthHolland, LasVegas: pergamon, 2000:27
  • 5[5]Yang S, Shang C, Yuan Y, He X. Thermec'2000, NorthHolland, LasVegas: pergamon, 2000:25
  • 6[6]Yang S, Shang C, Yuan Y, He X. Thermec' 2000, NorthHolland, LasVegas: pergamon, 2000:31
  • 7[7]Shang C, Yang S, Wang X, Yuan Y, He X. In: Liu G,Wang F, Wang Z, Zhang H eds, HSLA Steels' 2000, Beijing: Metallurgy Industry Press, 2000:304
  • 8[8]Zhou G, Wen M, Li P, He X. Acta Metall Sin (English Lett), 2000; 13:623
  • 9[9]Yang S, Shang C, Wang X, Yuan Y, He X. In: Liu G,Wang F, Wang Z, Zhang H eds, HSLA Steels' 2000, Beijing: Metallurgy Industry Press, 2000:227
  • 10Garcia C I, Deardo A J. Trans Iron Steel Soc AIME, 1991; 18:97.

共引文献145

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部