期刊文献+

不同外部风温对微尺度火焰的影响 被引量:2

Effect of external wind temperature to micro-scale flame
下载PDF
导出
摘要 为了研究微尺度燃烧器由于散热造成燃烧稳定性差的问题,对微尺度燃烧器外部吹风控制表面散热,对比不同工况下燃烧器的工作性能.当燃料混合气体体积流量为0.12、0.24、0.36L/min时,风温分别为277.15、380.15、635.15、790.15、1 001.15K.实验结果表明,提高冷却风温或燃料流量可以抑制熄火.测量燃烧器壁面温度,结合数值模拟,研究内部燃烧过程.结果显示,随着冷却风温上升,反应区域峰值温度上升且向上游偏移.在0.24L/min,燃料气体当量配比下,当冷却风温由277.15K上升到1 001.15K时,峰值温度上升约165K,反应中心上移约5mm.证明高温冷却风通过减少散热,提升反应强度,抑制热熄火.当体积流量由0.12L/min上升到0.36L/min时,虽然壁面散热量上升,但占总能量的份额相对降低,因此提升燃料流量可以抑制热熄火. The surface heat loss of a micro combustor was controlled by the external wind temperature and the performances of the combustor under different wind temperatures were compared in order to analyze the stability of micro combustor affected by the heat loss.The flow rates of fuel mixture were 0.12,0.24,0.36 L/min.The wind temperatures were adjusted to 277.15,380.15,635.15,790.15 and 1 001.15 K.Experimental results show that increasing the wind temperature or fuel-mixture flow rate can inhibit the extinction.The surface temperatures of the combustor at different conditions were measured.The numerical simulation was applied to investigate the internal combustion process.Results showed that the higher wind temperature made the reaction temperature increase and the reaction region shift upstream.At 0.24 L/min and stoichiometric condition,the peak temperature increased by 165 K and the reaction region shifted upstream by 5 mm while the wind temperature increased from 277.15 K to 1001.15 K.Accordingly,high wind temperature intensifies the reaction rate,thus inhibites extinction.The heat loss increased while the flow rate increased from 0.12 to 0.36 L/min.But the ratio of heat loss to total energy decreased,which indicated that increasing fuel-mixture flow rate can inhibit extinction.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第1期146-150,167,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50606030) 高等学校博士学科点专项科研基金资助项目(20060335124) 高等学校学科创新引智计划资助项目(B08026) 国家杰出青年基金资助项目(50525620)
关键词 微燃烧 数值模拟 散热 熄火 微尺度燃烧器 micro combustion numerical simulation heat loss extinction micro-scale combustor
  • 相关文献

参考文献27

  • 1AHN J, EASTWOOD C, SITZKI L, et al. Gas-phase and catalytic combustion in heat-recirculating Burners[J]. Proceedings of the Combustion Institute, 2005, 30(2) : 2463 - 2472.
  • 2FERNANDEZ-PELLO C. Micropower generation using combustion: Issues and approaches [J]. Proceedings of the Combustion Institute, 2002. 29 ( 1 ) : 883 - 899.
  • 3JACOBSON S A, EPSTEIN A. H. An informal survey of power meres [C]//The International Symposium on Micro-Mechanical Engineering. Tsukuba, Japan: [s. n. ],2003.
  • 4SPADACCINI C M, MEHRA A, LEE J. High power density silicon combustion system for micro gas turbine engines [J]. Engineering Gas Turbines Power, 2003, 9(4): 517-527.
  • 5EPSTEIN A H, SENTURIA S D, ANATHASURESH G. Power mems and microengines [C]// IEEE Transducers' 97 Conference. Chicago : IEEE, 1997.
  • 6YANG W M, CHOU S K, SHU C, et al. Microscale combustion research for application to micro thermophotovoltaic systems [J]. Energy Conversion and Management, 2003, 44(16): 2625-2634.
  • 7CHIA L C, FENG B. The development of a micropower (micro-thermophotovoltaic) device [J]. Journal of Power Sources, 2007, 165(1) : 455 - 480.
  • 8YUASA S, OSHIMI K, NOSE H, et al. Concept and combustion characteristics of ultra-micro combustors with premixed flame [J]. Proceedings of the Combustion Institute, 2005, 30(2): 2455-2462.
  • 9WAITZ I A, GAUBA G, TZENG Y S T. Combustors for micro-gas turbine engines [J]. American Society of Mechanieal Engineers, 1998, 120 : 109 - 117.
  • 10CHURCHILL S W. Thermally stabilized combustion [J]. Chemical Engineering and Technology, 1989, 12(1): 249 - 254.

同被引文献31

  • 1TURNS S R, Understanding NOx formation in nonpremixed flames: Experiments and modeling [J]. Progress in Energy and Combustion Science, 1995, 21(5): 361-385.
  • 2DE ZILWA S R N, EMIRIS I, UHM J H, Et al. Influence of oscillations on NOx emissions from ducted flames [J]. Experiments in Fluids, 2002, 32(4): 453-457.
  • 3KIM H K,KIM Y. Studies on combustion characteristics and flame length of turbulent oxy fuel flames [J]. Energy & Fuels, 2007, 21(3): 1459-1467.
  • 4MEUNIER P, COSTA M, CARVALHO M G. The formation and destruction of NO in turbulent propane diffusion flames [J]. Fuel, 1998, 77(15): 1705-1714.
  • 5WEILAND N, CHEN R H,STRAKEY P. Effects of coaxial air on nitrogen diluted hydrogen jet diffusion flame length and NOx emission[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2983-2989.
  • 6LI G, GUTMARK E J. Effect of exhaust nozzle geometry on combustor flow field and combustion characteristics [J]. Proceedings of the Combustion Institute, 2005, 30(2): 2893-2901.
  • 7LEE D, PARK J k, JIN J, et al. A simulation for prediction of nitrogen oxide emissions in lean premixed combustor [J]. Journal of Mechanical Science and Technology, 2011, 25(7): 1871-1878.
  • 8CHAO Y C, HUANG Y W, WU D C. Feasibility of controlling NOx emissions from a jet flame by acoustic excitation [J]. Combustion Science And Technology, 2000, 158: 461.
  • 9TASHTOUSH G T. Effect of acoustics on NOx emission in premixed flame, experimental study [J]. Energy & Environment, 2003,14(4): 451-460.
  • 10HASSAN M I, WU T W, SAITO K. A combination effect of reburn, post flame air and acoustic excitation on NOx reduction [J]. Fuel, 2013, 108: 231-237.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部