期刊文献+

海底反射对水声射线混沌行为的影响

Influence of ocean bottom reflection on ray chaotic behaviors in underwater acoustics
下载PDF
导出
摘要 本文探讨非线性声速分布、内波扰动、和海底反射对哈密顿抛物射线方程动力学行为的影响。运用Poincare映象、Lyapunov指数等非线性动力学方法对射线系统行为进行描述。结果显示水声射线在不发生海底反射的情况下,内波对声速扰动的增强将导致正的Lyapunov指数,使射线产生不规则的混沌运动并扩大射线系统的混沌区域。然而海底反射显著影响了声速分布、内波扰动和射线运动的非线性相互作用。海底深度的减小使声射线系统的混沌区域扩大,然而过小的深度减弱了声速分布和射线的非线性相互作用,使混沌区域缩小。因此,我们可以得出海底反射对于水声射线的混沌动力学行为有重要影响的结论。 The influence of ocean bottom reflection on ray chaotic behaviors is investigated in the parabolic ray system that includes nonlinear sound-speed profile,internal waves,and ocean bottom reflection.Nonlinear dynamic methods including Poincare map and Lyapunov exponent are employed to describe the ray dynamic behaviors.The results show that the sound speed perturbation caused by internal waves may result in ray chaos and create larger chaotic regions.Ocean bottom reflection significantly influences nonlinear interactions among sound speed distribution,internal wave perturbation,and ray propagation.A decrease of ocean depth may broaden the chaotic ray regions,however, an excessively decrease of depth would decrease nonlinear interactions and thus chaotic regions of the ray system. We conclude that ocean bottom reflection plays an important role in affecting ray nonlinear behaviors in underwater acoustics.
作者 张宇 徐晓辉
出处 《声学学报》 EI CSCD 北大核心 2011年第2期221-225,共5页 Acta Acustica
关键词 射线方程 海底反射 混沌行为 LYAPUNOV指数 水声 非线性相互作用 POINCARE 动力学行为 Acoustic wave propagation Behavioral research Chaotic systems Lyapunov methods Oceanography Ultrasonic velocity measurement
  • 相关文献

参考文献8

  • 1尤立克R J著,洪申译.水声原理(第三版).哈尔滨:哈尔滨船舶工程学院出版社,1990:120.
  • 2Hegewiseh K C,Cerruti N R,Tomsovic.Ocean acoustic wave propagation and ray method correspondence:Internal wave fine structure.J.Acoust.Soc.Am.,2005;117(3):1582-1594.
  • 3Smith K B,Brown M G,Tappert F D.Ray chaos in underwater acoustics.J.Acoust.Soc.Am.,1992;91(4):1939-1949.
  • 4Tappert F D.Theory of explosive beam spreading due to ray chaos.J.Acoust.Soc.Am.,2003;114(5):2775-2781.
  • 5Kon'kov L E,Makarov D V,Sosedko E V,Uleysky M Yu.Recovery of ordered periodic orbits with increasing wavelength for sound propagation in a range-dependent waveguide.Phys.Rev.E,2007;76(2):056212.1-056212.9.
  • 6LI Xiaojun,ZHANG Yu,DU Gonghuan.Influence of perturbations on chaotic behavior of the parabolic system.J.Acoust.SDc.Am.,1999;105(4):2142-2148.
  • 7WolfA,Swift J B,Swinney H L,Vastano J A.Determining Lyapunov exponents from a time series.Physica D,1985;16(3):285-317.
  • 8Henon M.On the numerical computation of Poincaré maps.Physica D,1982;5(2-3):412-414.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部