期刊文献+

区域高等级公路网交通状态识别与分析模型研究 被引量:2

A Study on Traffic State Recognition and Analysis Models for Regional High Grade Highway Network
原文传递
导出
摘要 为了在区域内分析高等级路网交通状态,建立了一种区域高等级路网交通状态分析模型。首先分析路网结构并对路段的交通状态进行识别分类,建立在实时交通状态下的区域高等级路网模型;然后基于路网模型运用系统结构分析法建立路网交通状态分析模型,根据不同交通状态分析需求得到不同的交通状态可达矩阵,并对可达矩阵分层分析。实例分析表明:该模型能够有效地判别路网中节点的可达性和连通性,描述路网的交通状态时空变化规律,若通过及时发布信息,出行者可根据不同的信息需求来选择最优路径,避免大范围拥挤,从而提高整个路网的运行效率。 In order to analyze traffic state of regional high grade highway network,how to establish a model for analyzing is researched.The structure of network is firstly analyzed,then the traffic state of segments is recognized and classified.After this,a model of regional high grade highway network is established under the real-time traffic state.Based on this model,another model for analyzing the traffic state of network is established by using the method of system structural analysis.This model can obtain the diffe-rent reachable matrix of the network under different demanded levels of traffic state of segments,then analyze the reachable matrix by hierarchical approach.The example proves that the model can identify the connectivity and accessibility between each pair of nodes in the current traffic state of network and describe the spatial and temporal variation of traffic status of entire network effectively.Through releasing the real-time information timely,the traveler can choose the right path according to different information to avoid congestion,improve the operational efficiency of the entire road network.
出处 《公路》 北大核心 2011年第2期100-106,共7页 Highway
基金 交通部交通应用基础研究项目,项目编号2008-319-812-020
关键词 交通工程 交通状态分析 系统结构分析法 区域高等级路网 可达性 连通性 traffic engineering traffic state analysis system structure analysis method regional high-grade highway network connectivity accessibility
  • 相关文献

参考文献3

二级参考文献16

  • 1郭伟,姚丹亚,付毅,胡坚明,刘宁.区域交通流特征提取与交通状态评估方法研究[J].公路交通科技,2005,22(7):101-104. 被引量:38
  • 2Jiuyi Hua, Ardeshir Faghri. Dynamic Traffic Pattern Classification Using Artificial Neural Networks [R] .Transportation research Record 1399:14-19.
  • 3Adel W Sadek, Michael J Demetsky, Brain L Smith. Case-Basd Reasoning for Real-Time Traffic Flow Wanagement [J] .Computer-Aided Civil and Infrastructure Engineering, 1999, 14: 347-356.
  • 4Attor Sanju Nair,Jyh-Charn Liu,Laurence Rilett,Saurabh Gupta.Non-Linear Analysis of Traffic Flow.2001 IEEE Intelligent Transportation Systerns Conference Proceedings, 2001: 683- 687.
  • 5Hojjat Adeli, Asim Karim.Fuzzy-Wavelet RBFNN Model for Freeway Incident Detection [J] .Journal of Transportation Engineering, 2000:464-471.
  • 6Karlene A Kosanovich, Michael J Piovoso.PCA of Wavelet Transformed Process Data for Monitoring[J] .Intelligent Data Analysis, 1997 (1) :85-99.
  • 7Vladimir N Vapnik.Statistical Learning Theory [M] .New Yolk: Wiley, 1988.
  • 8Vladimir N Vapnik.The Nature of Statistical Learning Theory [M] .New York: Springer, 1995.
  • 9PARAMICS Use, Guide-Version 3.0.U.K.Quadstone Limited[R] .Edinburgh, 1999.
  • 10丹尼尔L鸠洛夫 马休J休伯.交通流理论[M].北京:人民交通出版社,1983..

共引文献80

同被引文献14

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部