期刊文献+

密度泛函理论研究闪锌矿结构CrTe和VTe半金属铁磁性的稳定性 被引量:4

Density functional theory study on stability of half-metallic ferromagnetism of zinc-blende CrTe and VTe
下载PDF
导出
摘要 采用基于密度泛函理论的全势能线性缀加平面波方法对闪锌矿结构CrTe和VTe的电子结构进行自旋极化计算.闪锌矿相CrTe和VTe处于平衡晶格常数时都是半金属性的,它们自旋向下子能带的带隙分别是2.82 eV和2.70 eV,半金属隙分别是0.89 eV和0.33 eV.使晶体相对于平衡晶格在士10%的范围内发生各向同性形变,对闪锌矿相CrTe和VTe的电子结构进行计算,计算结果表明相对于平衡晶格的各向同性形变分别为-6%~10%和-3%~10%时它们仍然具有半金属性质;与此同时,在以上相同的形变范围内闪锌矿相CrTe和VTe的总磁矩分别稳定于4.00μB/formula和3.00 μB/formula.在晶体相对于平衡晶格发生各向同性形变分别为—6%~10%和—3%~10%时,闪锌矿相CrTe和VTe能保持半金属铁磁性. Using the full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory, the spin-polarized calculations of electronic structure for the zinc-blende CrTe and VTe have been performed. Zinc-blende CrTe and VTe at their equilibrium lattice constants are half-metallic with spin-down energy gaps of 2.82 and 2.70eV and half-metallic gaps of 0.89 and 0.33eV, respectively. The electronic structure of zinc-blende CrTe and VTe have been calculated under uniform strains from -10% to +10% relative to the equilibrium lattice constant. The calculated results indicate that zinc-blende CrTe and VTe can maintain half-metallic property and keep their total magnetic moments of 4.00 and 3.00 μB/formula for the uniform strains change within -6% ― 10% and -3% ― 10%, respectively. The zinc-blende CrTe and VTe retain half-metallic ferromagnetism from -6% to 10% and from -3% to 10% uniform strain, respectively.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2011年第1期183-188,共6页 Journal of Atomic and Molecular Physics
基金 海南省教育厅高等学校科研资助项目(Hjkj 2009-47)
关键词 密度泛函理论 半金属(性)的 磁矩 电子结构 density functional theory, half-metallic, magnetic moment, electronic structure
  • 相关文献

参考文献2

二级参考文献17

  • 1[1]Wolf S A,Awschalom D D,Buhrman R A,et al.Spintronics:a spin-based electronics vision for the future[J].Science,2001,294 (5546):1488.
  • 2[2]Pickett W E,Moodera J S.Half metallic magnets[J].Phys.Today,2001,54 (5):39.
  • 3[3]Osborne Ian S.The attraction of magnetism[J].Science,2001,294 (5546):1483.
  • 4[4]Awschalom D D,Kikkawa J M.Electron spin and optical coherence in semiconductors[J].Physics Today,1999,52:33.
  • 5[5]de Groot R A,Mueller F M,van Engen P G,et al.New class of materials:half-metallic ferromagnets[J].Phys.Rev.Lett.,1983,50(25):2024.
  • 6[6]Jedema F J,Filip A T,van Wees B J.Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve[J].Nature,2001,410:345.
  • 7[7]Lewis S P,Allen B P,Sasaki T.Band structure and transport properties of CrO2[J].Phys.Rev.B,1997,55:10253.
  • 8[8]Zhang M,Hu H N,Liu Z H,et al.Half-metallic ferromagnetism in the zinc-blende MPo (M=V,Cr,and Mn)[J].J.Magn.Magn.Mater.,2004,270:32.
  • 9[9]Lin B G.Robust half-metallic ferromagnetism in zinc-blende CrSb[J].Phys.Rev.B,2003,67,172411[4 pages].
  • 10[10]Picozzi S,Continenza A,Freeman A J.Co2Mn X (X =Si,Ge,Sn) Heusler compounds:ab initio study of their structural,electronic,and magnetic properties at zero and elevated pressure[J].Phys.Rev.B,2002,66,094421[9 pages].

共引文献4

同被引文献77

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部