期刊文献+

纳米沸石修饰微通道反应器内固定化酶催化的水解反应动力学 被引量:2

Kinetics Study of Hydrolysis Catalyzed by Immobilized Enzyme in Nanozeolite Modified Microchannel Reactors
下载PDF
导出
摘要 通过在毛细管内层层组装纳米沸石并固定脂肪酶来构建纳米沸石修饰的固定化酶微反应器通道,将纳米沸石良好的生物相容性和高的酶固定能力与微反应器反应效率高和扩散传质快等优点相结合,以对硝基苯棕榈酸酯的水解作为探针反应,对该微反应器内固定化酶催化水解反应动力学进行了研究和计算,并与普通反应器内同样的反应进行比较.通过对比米氏方程参数,证实在微反应器内酶催化水解反应效率比普通反应器内提高3倍以上,并可提高酶和反应底物的亲和能力. Nanozeolite modified microchannel reactors were constructed by assembling zeolite nanocrystals into capillary using layer-by-layer assemble method.And then lipase CRL was immobilized on the nanozeolites assembled in the microreactors.The nanozeolite modified microreactors could incorporate excellent biocaptibility and large external area of nanozeolites and high efficiency and fast mass diffusion of microreactors together.Hydrolysis of 4-nitrophenyl palmitate(4-NPP) was carried out as a probe reaction to study the hydrolysis kinetics catalyzed by immobilized CRL in the microreactors.By comparing the characteristic parameters(Km and Vmax) of Michaelis-Menten equation,it is found that efficiency of enzymatic hydrolysis in such nanozeolite modified microchannel reactors could be 3 or more times higher than that of the same reaction in conventional reactors.In addition,affinity between enzyme and substrates is also enhanced in the nanozeolite modified microchannel reactors.
机构地区 复旦大学化学系
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2011年第3期753-757,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20873025)资助
关键词 纳米沸石 微反应器 脂肪酶 对硝基苯棕榈酸酯水解 Nanozeolite Microreactor Lipase CRL Hydrolysis of 4-nitrophenyl palmitate
  • 相关文献

参考文献15

  • 1Ehrfeld W.,Hessel V.,L(o)we H.;Translated by LUO Guang-Sheng(骆广生),WANG Yu-Jun(王玉军),L(U) Yang-Cheng(吕阳成).Microreactors:New Technology for Modem Chemistry(微反应器:现代化学中的新技术)[M] ,Beijing:Chemical Industry Press,2004:4-10.
  • 2Wuyts S.,de Temmennan K.,de Vos D.E.,Jacobs P.A..Chem.Eur.J.[J] ,2005,11(1):386-397.
  • 3Berkessel A.,Sebastian-lbarz M.L.,Muller T.N..Angew.Chem.Int.Ed.[J] ,2006,45(39):6567-6570.
  • 4Teng Y.,Xu Y..Anal.Biochem.[J] ,2007,363(2):297-299.
  • 5Cummings S.A.,Tunge J.A.,Norton J.R..J.Am.Chem.Soc.[J] ,2008,130(14):4669-4679.
  • 6Lvov Y.,Decher G.,Mohwald H..Langmuir[J] ,1993,9(2):481-486.
  • 7Jin W.,Shi X.Y.,Caruso F..J.Am.Chem.Soc.[J] ,2001,123(33):8121-8122.
  • 8Yu T.,Zhang Y.H.,You C.P.,Zhuang J.H.,Wang B.,Liu B.H.,Kang Y.J.,Tang Y..Chem.Eur.J.[J] ,2006,12(4):1137-1143.
  • 9Yeung K.L.,Zhang X.F.,Lau W.N.,Martin A.R..Catal.Today[J] ,2005,110(1/2):26-37.
  • 10Hu Y.Y.,Liu C.,Zhang Y.H.,Ren N.,Tang Y..Microporous and Mesoporous Mater.[J] ,2009,119(1-3):306-314.

二级参考文献13

  • 1Robinson P J,Dunnill P,Lilly M D.Properties of Magnetic Supports in Relation to Immobilized Enzyme Reactors [J].Biotechnol.Bioeng.,1973,15:603-607.
  • 2Arica M Y,Yavuz H,Patir S,et al.Immobilization of Glucoamylase onto Spacer-arm Attached Magnetic Poly (Methylmethacrylate) Microspheres:Characterization and Application to a Continuous Flow Reactor [J].J.Mol.Catal.B:Enzyme,2000,11:127-138.
  • 3Liu C,Honda H,Ohshima A,et al.Development of Chitosan-Magnetite Aggregates Containing Nitrosomonas europaea Cells for Nitrification Enhancement [J].J.Biosci.Bioeng.,2000,89:420-425.
  • 4Pawinee K,Suree P.Simple Assay Method for Lipase Activity and Analysis of Its Catalytic Hydrolysis Product in Water-poor Media [J].Indian J.Chem.,1993,32B:88-89.
  • 5Bradford M M.A Rapid and Sensitive Method for the Quantition of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding [J].Anal.Biochem.,1976,72:248-254.
  • 6Guo Z,Bai S,Sun Y.Preparation and Characterization of Immobilized Lipase on Magnetic Hydrophobic Microspheres [J].Enzyme Microb.Technol.,2003,32:776-782.
  • 7Liu H Z,Yang W,Chen J.Effects of Surfactants on Emulsification and Secondary Structure of Lysozyme in Aqueous Solutions [J].Biochem.Eng.J.,1998,2:187-196.
  • 8Brady L,Brzozowski A M,Derewenda Z S,et al.A Serine Protease Triad Forms the Catalytic Center of a Triacylglycerol Lipase [J].Nature,1990,343:767-770.
  • 9宫月平 刘会洲 安振涛.超顺磁性聚合物微球及其制造方法[P].中国专利:CN1253147.2000-05-17.
  • 10谢渝春,刘会洲,陈家镛.有机相中的酶促拆分过程[J].化学进展,1997,9(3):291-299. 被引量:4

共引文献15

同被引文献19

  • 1ELISABETTA B, GIOVANNI F, CI.AUDIO F, et al. On the stereochemistry of the baker's yeast-mediated reduction of regioisomeric unsaturated aldehydes examples of enantioselectivity switch promoted by substrate-engineering[J]. J Mol Catal B Enzym, 2012,84 : 94- 101.
  • 2ENAS T S, TAKUYA T, NOBUYOSHI N. Catalytic activity of baker's yeast in a mediatorless microbial fuel cell[J]. Bioelectroehemistry, 2012,86 : 97-101.
  • 3MADHURESH K S, SOMASHEKAR R B, ANISH K, et al. Chemo-enzymatic synthesis of optically pure rivastigmine intermediate using alcohol dehydrogenase from baker's yeast[J]. J Mol Catal B Enzym, 2013,91 : 87-92.
  • 4VANESSA D S, BORIS U S, MARIA DA G N. Asymmetric reduction of (4R)-(-)-carvone catalyzed by baker's yeast in aqueous mono- and biphasic systems[J]. J Mol Catal B Enzym, 2012,77: 98-104.
  • 5PAULA V P,CSABA P,MONICA I T,et al. Baker's yeast-mediated synthesis of (R)- and(S)-heteroaryl-ethane-1,2-diols[J]. Tetrahedron Asymmetry, 2008,19 : 1959-1964.
  • 6XUE L,ZHOU D J, TANG L, et al. The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer-metal complex, silica-supported chitosancobah complex[J]. React Funct Polym, 2004,58 :117-121.
  • 7戴大章,夏黎明.微水相中改性Ultrastable-Y分子筛固定化脂肪酶拆分(R,S)-2-辛醇[J].高等学校化学学报,2007,28(12):2307-2310. 被引量:5
  • 8单天宇,王栋,徐岩,何军邀.华根霉菌丝体结合脂肪酶催化酯合成动力学拆分2-辛醇[J].催化学报,2008,29(4):403-408. 被引量:9
  • 9石贤爱,李聪颖,傅娟,孟春,郭养浩,娄文勇,吴虹,宗敏华.表面活性剂对面包酵母细胞催化2-辛酮不对称还原反应的影响[J].过程工程学报,2010,10(2):339-343. 被引量:4
  • 10石玉刚,励建荣,唐琼.面包酵母催化不对称还原EOPB反应中的溶剂效应[J].化学研究与应用,2011,23(2):145-151. 被引量:2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部