期刊文献+

基于小波特征与动态高斯混合模型的动作电位分类研究 被引量:4

Spike sorting based on wavelet feature and dynamic mixture-of-Gaussians models
下载PDF
导出
摘要 提出了一种结合小波时频特征提取以及动态高斯混合模型模式分类的动作电位分类新算法,以实现植入式脑电研究中非同源动作电位的非监督聚类。在阈值法检测动作电位信号的基础上,采用sym5小波变换基函数提取各个动作电位的时频特征,以提高动作电位信号在高频突变阶段的时间分辨率;考虑到动作电位信号的非平稳特性,对时频特征序列进行了分帧处理,然后分别采用高斯混合模型和贝叶斯网络模型对帧内和帧间数据进行建模,从而实现了基于动态高斯混合模型的动作电位模式分类。实验结果表明,该方法的分类性能抗干扰性及可靠性较好,仿真数据的错分率基本稳定在8.44%以内,真实数据的分类结果能较大程度贴近人工分类的结果。 To realize unsupervised spike sorting in the research of invasive brain activity,we have proposed a novel spike sorting algorithm framework based on wavelet feature and dynamic mixture-of-Gaussians clustering.After spike detection using amplitude threshold method,sym5 wavelet is employed to extract the time-frequency features representing spikes generated by different source neurons.Considering the non-stationary nature of spike train data,the wavelet time-frequency feature is divided into short time frames.Then,the dynamic clustering process proceeds in a Bayesian framework,with the source neurons modeled as Gaussian mixtures.Experimental results demonstrate that our spike sorting method achieves better robustness and reliability.Experiments on simulated spike signals show an encouraging misclassified rate below 8.44%.Furthermore,experiments on real spike signals show that the clustering results highly agree with those of human sorter.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第2期475-480,共6页 Chinese Journal of Scientific Instrument
基金 浙江省新苗人才计划(2009G60G2040018)资助项目
关键词 动作电位分类 小波时频特征 高斯混合 贝叶斯网络 多通道神经元信号采集 spike sorting wavelet time & frequency feature Gaussian mixture Bayesian network multi-channel neural signal recording
  • 相关文献

参考文献19

  • 1LEBEDEV M,NICOLELIS M.Brain-machine interfaces:past,present and future[J].Trends in Neurosciences,2006,29(9):536-546.
  • 2BROWN E,KASS R,MITRA P.Multiple neural Spike train data analysis:state-of-the-art and future challenges[J].Nature Neuroscience,2004,7(5):456-461.
  • 3明东.用于脑机接口的感觉刺激事件相关电位研究进展[J].电子测量与仪器学报,2009,23(6):1-6. 被引量:26
  • 4于毅,代建华,章怀坚,张韶岷,郑筱祥.基于能量的神经元动作电位检测实验研究[J].仪器仪表学报,2009,30(1):193-197. 被引量:5
  • 5LEWICKI M S.A review of methods for Spike sorting:The detection and classification of neural action potentials[J].Network:Computation Neural System,1998,9(4):53-78.
  • 6WELSH J P,SCHWARZ C.Multi-electrode recording from the cerebellum[J].Methods for Neural Ensemble Recordings,1999,5:79-100.
  • 7丁伟东,袁景淇,梁培基.多电极锋电位信号检测与分类方法研究[J].仪器仪表学报,2006,27(12):1636-1640. 被引量:13
  • 8LETERLIER J,WEBER P.Spike sorting based on discrete wavelet transform coefficients[J].Journal of Neuroscience Methods.2000,101(2):93-106.
  • 9BARHILLEL A,SPIRO A,STARK E.Spike sorting:Bayesian clustering of non-stationary data[J].Journal of Neuroscience Methods,2006,157(2):303-316.
  • 10SAMAR V J.Wavelet analysis of neuroelectric waveforms[J].Brain Language,1999,66(1):1-6.

二级参考文献91

共引文献60

同被引文献56

  • 1尚振宏,刘明业.二值图像中拐点的实时检测算法[J].中国图象图形学报(A辑),2005,10(3):295-300. 被引量:20
  • 2丁伟东,袁景淇,梁培基.多电极锋电位信号检测与分类方法研究[J].仪器仪表学报,2006,27(12):1636-1640. 被引量:13
  • 3胡广书.数字信号处理[M].北京:清华大学出版社,2003..
  • 4边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 5段思迪.纸币清分图像识别算法研究[J].盐城工学院学报(自然科学版),2007,20(3):29-31. 被引量:3
  • 6Theodoridiss,模式识别[M].北京:电子工业出版社,2010.
  • 7JOHN E F, DAVID R. Wireless communication with im- planted medical devices using the conductive properties of the body [ J ]. Expert Rev. Med. Devices, 2011,8 (4) : 423-429.
  • 8VELLISTE M, PEREL S, SPALDING M C, et al. Cortical control of a prosthetic arm for self-feeding [ J ]. Nature, 2008,453 (7198) : 1098-1101.
  • 9MORITZ C T,PERLMUTFER S I,FETZ E E. Direct con- trol of paralysed muscles by cortical neurons [ J ]. Nature, 2008,456(7222) : 639-642.
  • 10BENABID A L, CHABARDS S, M1TROFANIS J, et al. Deep brain stimulation of the subthalamic nucleus for thetreatment of Parkinson's disease [ J ]. Lancet Neurol, 2009,8 ( 1 ) : 67-81.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部