期刊文献+

不完全金融市场下基于二次效用函数的动态资产分配 被引量:8

Dynamic asset allocation based on quadratic utility function in an incomplete financial market
原文传递
导出
摘要 为了研究不完全市场条件下的连续时间动态投资组合选择问题,首先应用降维方法将不完全市场转化为完全市场,然后在转化后的完全市场条件下应用鞅方法得出二次效用函数意义下的最优投资策略.进而应用转化后的完全市场和原不完全市场下各参数的关系得到二次效用意义下不完全市场环境里最优投资策略的解析表达式,并分析风险厌恶因子对最优投资策略的影响.最后为了说明不完全市场和完全市场条件下投资者最优投资策略的变化,给出算例进行分析. This paper is concerned with continuous-time dynamic portfolio selection problem in an incomplete market.A complete market is created directly from the incomplete one by reducing the dimensions of the underlying Brownian motion.We derive optimal investment strategies based on quadratic utility function in the created complete market applying martingale method.According to the relations between the created complete market and the original incomplete one,we give explicit form solutions of optimal portfolio in the original incomplete market and analyze the effect of risk aversion factor on the optimal portfolio.Finally,the results obtained are illustrated on an example.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第2期205-213,共9页 Systems Engineering-Theory & Practice
基金 天津市自然科学基金(09JCYBLJC01800 075CYBJC05200)
关键词 不完全市场 动态投资组合 二次效用函数 鞅方法 最优投资策略 incomplete market dynamic portfolio quadratic utility function martingale method optimal investment strategy
  • 相关文献

参考文献15

  • 1Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77 -91.
  • 2Davis M. Option pricing in incomplete markets[C]//Mathematics of Derivatives Securities, Publications of the Newton Institute, 1997.
  • 3孙万贵.不完全市场中动态资产分配[J].应用数学学报,2006,29(1):166-174. 被引量:5
  • 4曹晓华,潘杰.不完全金融市场中基于最优对冲的衍生资产定价[J].电子科技大学学报,2008,37(1):154-156. 被引量:1
  • 5Karatzas I, Lehoczky J P, Shreve S E, et al. Martingale and duality for utility maximization in an incomplete market[J]. SIAM J Contr Optim, 1991, 29(3): 702- 730.
  • 6Zhang A H. A secret to create a complete market from an incomplete market[J]. Applied Mathematics and Computation, 2007, 191(1): 253 -262.
  • 7Musiela M, Rutkowski M. Martingale Methods in Financial Modelling[M]. Berlin: Springer, 1998.
  • 8Harrison J, Kreps D. Martingales and arbitrage in multi-period securities markets[J]. Journal of Economic Theory, 1979, 20(3): 381-408.
  • 9Harrison J, Kreps D. Martingales and arbitrage in multi-period securities markets[J]. Journal of Economic Theory, ]979, 20(3): 381-408.
  • 10Harrison J, Pliska S. Martingales and stochastic integrals in the theory of continuous trading[J]. Stochastic Processes and Their Applications, 1981, 11(3): 215-260.

二级参考文献28

  • 1Markowitz H. Portfolio Selection. Journal of Finance, 1952, 7:77-91.
  • 2Merton R. An Intertemporal Capital Asset Pricing Model. Econometrica, 1973, 41:867-888.
  • 3Merton R. Continuous Time Finance. Cambridge: Basil Blackwell, 1990, 1-100.
  • 4Richardson H. A Minimum Variance Result in Continuous Trading Portfolio Optimization. Management Science, 1989, 35:1045-1055.
  • 5Bajeux-Besnainou I, Portait R. Dynamic Asset Allocation in a Mean-variance Framework. Management Science, 1998, 44:79-95.
  • 6Zhou X Y, Li D. Continuous-time Mean-variance Portfolio Selection: a Stochastic LQ Framework.Applied Mathematics & Optimization, 2000, 42:19-33.
  • 7Lim A E B, Zhou X Y. Meamvariance Portfolio Selection with Random Parameters in a Complete Market. Mathematics of Operations Research, 2002, 27:101-120.
  • 8Zhao Y G, Ziemba W T. Mean-variance Versus Expected Utility in Dynamic Investment Analysis.Working paper, Nanyang Business School, 2000.
  • 9Karatzas I, Lehoczky J, Shreve S E, Xu G. Martingale and Duality Methods for Utility Maximization in an Incomplete Market. SIAM Journal of Control and Optimization, 1991, 29:702-730.
  • 10He H, Pearson N D. Consumption and Portfolio Policies with Incomplete Markets and Short-sale Constraints. Journal of Economic Theory, 1991, 54:259-305.

共引文献4

同被引文献78

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部