期刊文献+

Energy Stabilities, Magnetic Properties, and Electronic Structures of Diluted Magnetic Semiconductor Zn1-xMnxS(001) Thin Films

Zn1-xMnxS(001)稀磁半导体薄膜的能量稳定性、磁性和电子结构
下载PDF
导出
摘要 We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The energy stability and density of states of a single Mn atom and two Mn atoms at various doped configurations and different magnetic coupling state were calculated. Different doping configurations have different degrees of p-d hybridization, and because Mn atoms are located in different crystal-field environment, the 3d projected densities of states peak splitting of different Mn doping configurations are quite different. In the two Mn atoms doped, the calculated ground states of three kinds of stable configurations are anti-ferromagnetic state. We analyzed the 3d density of states diagram of three kinds of energy stability configurations with the two Mn atoms in different magnetic coupling state. When the two Mn atoms are ferromagnetic coupling, due to d-d electron interactions, density of states of anti-bonding state have significant broadening peaks. As the concentration of Mn atoms increases, there is a tendency for Mn atoms to form nearest neighbors and cluster around S. For such these configurations, the antiferromagnetic coupling between Mn atoms is energetically more favorable.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第1期47-54,I0003,共9页 化学物理学报(英文)
基金 This work was supported by the National Natural Science Foundation of China (No.60776039 and No.60406005), the Natural Science Foundation of Beijing (No.3062016), and the School Foundation of Beijing Jiaotong University.
关键词 Zn1-xMnxS(001) thin film Electronic structure Diluted magnetic semiconductor Zn1-xMnxS(001)薄膜 电子结构 稀磁半导体
分类号 O [理学]
  • 相关文献

参考文献27

  • 1H. Ohno, Science 281,951 (1998).
  • 2Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).
  • 3R. R. Galazka, S. Nagata, and P. H. Keesom, Phys, Rev. B 22, 3344 (1980).
  • 4J. A. Caj, J. Ginter, and R. R. Galazka, Phys. Status Solidi B 89, 655 (1978).
  • 5J. A. Gaj, R. Planel, and G. Fishman, Solid State Commun. 29, 435 (1979).
  • 6N. T. Khoi and J. A. Gaj, Phys. Status Solidi B 83, K133 (1977).
  • 7T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, and T. Dietl, Science 287, 1019 (2000).
  • 8D. D. Awschalom and R. K. Kawakami, Nature 408, 923 (2000).
  • 9S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. yon Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
  • 10J. K. Furdyna and J. Kossut, Diluted Magnetic Semiconductors, Singapore, (1991).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部