期刊文献+

分块矩阵取得极值秩的条件

The Conditions for the Partitioned Matrix Attains its Extremal Ranks
原文传递
导出
摘要 证明了如何选取矩阵X,Y和Z使得下面的分块矩阵(AXYZ)取得它的极大秩和极小秩,这里A∈C^(m×n)是一个已知矩阵,X∈C^(m×k),Y∈C^(p×n)和Z∈C^(p×k)是三个任意矩阵. This note,we show that how to choose the variable matrices X,Y and Zsuch that the partitioned matrix[AXYZ]attain its maximal and minimal rank,whereA∈C^(m×n) is a known matrix,X∈C^(m×k),Y∈C^(p×n) and Z∈C^(p×k) are three variablematrices.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第4期186-189,共4页 Mathematics in Practice and Theory
基金 上海市自然科学基金(10ZR1420600) 上海市教委科研创新项目(11zz182)
关键词 分块矩阵 极大秩 极小秩 partitioned matrix maximal rank minimal rank
  • 相关文献

参考文献2

二级参考文献17

  • 1Tian Y. Sum decompositions of the OLSE and BLUE under a partitioned linear model[J]. Internat Statistic Rev, 2007,75:224-248.
  • 2Tian Y. Rank equalities for block matrices and their Moore-Penrose inverses[J]. Houston J Math,2004,30:483- 510.
  • 3Liu Y, Wei M. Rank equalities for submatrices in generalized inverses MT.S^(2) of M[J]. Applied Mathematics and Computation, 2004,152 : 499-504.
  • 4Tian Y. Problem 39-6: Two equalities for the Moore-penrose inverse of a row block matrix[J]. IMAGE: The Bullentin of the International Linear Algebra SoCiety, 2007,39: 31.
  • 5Marsaglia G, Styan G P H. Equalities and inequalities for ranks of matrices[J]. Linear and Multilinear Algebra, 1974,2:269-292.
  • 6Wang G, Wei Y, Qiao S. Generalized Inverse: Theory and Computations[M]. Beijing/New York: Science Press, 2004.
  • 7Hall, F. J.: On the independence of blocks of generalized inverses of bordered matrices. Linear Algebra Appl., 14, 53-61 (1976)
  • 8Hall, F. J., Hartwig, R. E. Further result on generalized inverses of partitioned matrices. SIAM J. Appl. Math., 30, 617-624 (1976)
  • 9Guo, W. B., Liu, Y. H., Wei, M. S.: On the block independence in {1}-inverse of block matrix. Acta Mathematica Sinica, Chinese Series, 47(6), 1205-1212 (2004)
  • 10Wei, M., Guo, W.: On g-inverses of a bordered matrix: revisited. Linear Algebra Appl., 347(1-3), 189-204 (2002)

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部