摘要
研究了一个广义KdV方程的行波解,在行波变换下,该方程转化成含奇异线的平面系统,通过平衡点分析定性地得到不同参数条件下系统解的特性.特别的,由于相平面上的奇异线的存在,系统具有一些特殊结构的解,例如compactons、kink-compactons、anti-kink-compactons,给出了这些解的积分表达式,并且由椭圆函数积分求出了精确解.
On analysis of the bifurcations of a generalized KdV equation,the influence of the parameters on the wave forms has been investigated in details.Furthermore,the singular line on the phase plane may cause a few special solutions such as compactons、kink-compactons, anti-kink-compactons.The explicit expressions of these possible waves as well as the existence conditions have been presented.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第4期217-223,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(10972091)
江苏大学高级人才基金(09JDG011)