期刊文献+

含奇异线的广义KdV方程的行波解 被引量:1

Traveling Waves for a Generalized KdV Equation with Singular Line
原文传递
导出
摘要 研究了一个广义KdV方程的行波解,在行波变换下,该方程转化成含奇异线的平面系统,通过平衡点分析定性地得到不同参数条件下系统解的特性.特别的,由于相平面上的奇异线的存在,系统具有一些特殊结构的解,例如compactons、kink-compactons、anti-kink-compactons,给出了这些解的积分表达式,并且由椭圆函数积分求出了精确解. On analysis of the bifurcations of a generalized KdV equation,the influence of the parameters on the wave forms has been investigated in details.Furthermore,the singular line on the phase plane may cause a few special solutions such as compactons、kink-compactons, anti-kink-compactons.The explicit expressions of these possible waves as well as the existence conditions have been presented.
机构地区 江苏大学理学院
出处 《数学的实践与认识》 CSCD 北大核心 2011年第4期217-223,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10972091) 江苏大学高级人才基金(09JDG011)
关键词 广义KDV方程 奇异线 分岔 COMPACTON Kink-compacton generalized KdV equation singular line bifurcation compacton kink-compacton
  • 相关文献

参考文献2

二级参考文献22

  • 1Whitham G B 1974 Linear and Nonlinear Waves (New York: Wiley Interscience).
  • 2Johnson R S 1979 Phys. Lett. A 72 197.
  • 3Gel'fand I M and Dorfman I 1979 Funct. Anal. Appl. 13 248.
  • 4Fokas A S and Fuchssteiner B 1980 Lett. Nuovo Cimento 28 299.
  • 5Fokas A S 1995 Physica D 87 145.
  • 6Dai H H 1998 Wave Motion 28 367.
  • 7Bi Q S 2005 Phys. Lett. A 344 361.
  • 8Dullin H R, Gottwald G A and Holm D D 2001 Phys. Rev. Lett. 87 1772.
  • 9Li J and Zhang J 2004 Chaos, Solitons and Fractals 21 899.
  • 10Dai H H and Huo Y 2000 Proc. Roy. Soc. London A 456 331.

同被引文献12

  • 1E1 G A, Grimshaw R H, Pavlov M V. Integrable shallow-water equations and undular bores[J]. Stud. Appl. Math., 2001, 106: 157-186.
  • 2Li X M, Chen A H. Darboux transformation and multi-soliton solutions of Boussinesq-Burgers equation[J]. Phys. Lett. A, 2005, 342: 413-420.
  • 3Kaup D J. A higher-order water wave equati0n-and its method of solution[J]. Progr. Theoret. Phys., 1975, 54: 396-408.
  • 4Wang P, Tian B, Liu W J et al. Lax pair, B~icklund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves[J]. Appl Math Comput, 2010, 218: 1726-1734.
  • 5Rady A S, Osman E S, Khalfallah M. Multi-soliton solution, rational solution of the Boussinesq- Burgers equations[J]. Commun. Nonlinear Sci Numer Simulat, 2010, 15: 1172-1176.
  • 6Khalfallah M. Exact traveling wave solutions of the Boussinesq-Burgers equation[J]. Math Comput Model, 2009, 49: 666-671.
  • 7Gao L, Xu w, Tang Y N et al. New families of travelling wave solutions for Boussinesq-Burgers equation and (3+1)-dimensional Kadomtsev-Petviashvili equation[J]. Phys Lett A, 2007, 366: 411- 421.
  • 8Rady A S, Khalfallah M. On soliton solutions for Boussinesq-Burgers equations[J]. Commun. Non- linear Sci Numer Simulat, 2010, 15: 886-894.
  • 9Luo D et al. Bifurcation Theory and Methods of Dynamical Systems[M]. London: World Scientific Publishing Co., 1997.
  • 10Bi Q S. Singular solitary waves associated with homoclinic orbits[J]. Physics Letters A, 2006, 352: 227-232.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部