期刊文献+

多目标博弈平衡点存在性定理的推广 被引量:2

Generalization of the Existence Theorem of Equilibrium Points for Multiobjective Games
原文传递
导出
摘要 以向量值KyFan不等式的推广为基础,讨论支付函数为向量形式的n人非合作多目标博弈弱Pareto-Nash平衡点存在性条件,将多目标博弈平衡点存在性定理中策略空间的紧性,支付函数的凸性等条件减弱. Based on the extension of the vector-valued Ky Fan inequality,the paper discussed some existence conditions of weakly Pareto-Nash equilibrium points for n-person noncooperative multiobjective games with vector-valued payoff function,then the existence conditions of equilibrium points for multiobjective games are weakened by relaxing the compactness of strategy space,the convexity of vector-valued payoff function.
作者 赵薇 蒋岚翔
机构地区 贵州大学理学院
出处 《数学的实践与认识》 CSCD 北大核心 2011年第4期241-246,共6页 Mathematics in Practice and Theory
关键词 多目标博弈 平衡点 存在性 向量值Ky Fan不等式 multiobjective games equilibrium points existence vector-valued Ky Fan inequality
  • 相关文献

参考文献5

  • 1Wang S Y. Existence of a Pareto equilibrium[J]. J Optim Theory Appl, 1993(79): 373-384.
  • 2Yang H, Yu J. On essential components of the set of weakly Pareto-Nash equilibrium points[J]. Applied Math Letters, 2002(15): 553-560.
  • 3Luc D T. Theory of Vector Optimization[M]. Springer-Verlag[M], Berlin, 1989.
  • 4Fan K. A generalization of Tychonoff's fixed point theorem[J]. Math Ann, 1961, 142: 305-310.
  • 5Baye M R, Tian G Q, Zhou J X. Characterizations of the existence of equilibria in games with discontinuous and non-quasiconcave payoffs[J]. Review of Economic Studies,1993, 60: 935-948.

同被引文献17

  • 1肖条军.博弈论及其应用[M].上海:上海三联书店版,2005:2.
  • 2Shapley C U, Mandayam N B, Goodman D J. Efficient Power Control via Pricing in Wireless Data Networks [J]. IEEE Transactions on Communications, 2002, 50(2) : 291-303.
  • 3Ansari Q H, Khan Z. On Existence of Pareto Equilibria for Constrained Multiobjective Games [J]. Southeast Asian Bulletin of Mathematics, 2004, 27(9) : 937 -982.
  • 4YANG Hui, YU Jian. Unified Approaches to Well-Posedness with Some Applications[J]. Journal of Global Optimization, 2005, 31(3): 371-381.
  • 5Novak A J, Feichtinger G, Leitmann G. A Differential Game Related to Terrorism.. Nash and Stackelberg Strategies [J]. J OptimTheoryAppl, 2010, 144(3):533-555.
  • 6张杰,郭丽杰,周硕,等.运筹学模型及其应用[M].北京:清华大学出版社,2012.
  • 7逄金辉,张强.模糊多目标两人零和博弈的Pareto策略[J].北京理工大学学报,2008,28(10):934-936. 被引量:1
  • 8陈忠,谢能刚,张子明.多目标决策设计的博弈求解方法[J].河海大学学报(自然科学版),2009,37(2):194-199. 被引量:1
  • 9李金泽,汪训孝.多目标博弈Nash平衡点的存在性[J].西南民族大学学报(自然科学版),2010,36(4):547-550. 被引量:1
  • 10王珺,杨雪.多方参与下的微分对策[J].吉林大学学报(理学版),2011,49(2):233-234. 被引量:2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部