期刊文献+

一类迭代方程扩张解的存在性

Existence of expansive solutions for an iterative equation
原文传递
导出
摘要 作者讨论了一类广泛的迭代方程f^n(x)=G(x,f(x),f^2(x),…,f^(h-1)(x)).通过Sch(o|¨)rder变换,迭代方程被转化为辅助方程的形式.在不要求方程中含有f^1的条件下作者给出了局部C^1解的存在性.它的特殊形式就是多项式型迭代方程的首项系数问题. A general kind of iterative equation f^n(x)=G(x,f(x),f^2(x),..,f^n-1 (x)) is discussed. The equation is reduced to an auxiliary equation by Schroder transformation, and the local C1 solution is given without the hypothesis that f^1 exists. Its special form is the leading coefficient problem of polynomial-like iterative equations.
作者 陈敬敏
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期19-22,共4页 Journal of Sichuan University(Natural Science Edition)
关键词 迭代方程 首项系数问题 Schr(o|¨)der变换 局部扩张解 iterative equation, leading coefficient problem, schroder transformation, local expansive solution
  • 相关文献

参考文献3

二级参考文献21

  • 1麦结华.关于迭代函数方程f^2(x)=af(x)+bx的通解[J].Journal of Mathematical Research and Exposition,1997,17(1):83-90. 被引量:7
  • 2Kuczma M, Choczewski B, Ger B. Iterative functional equations[M]. Cambridge: Cambridge University Press, 1990.
  • 3Baron K, Jarczyk W. Recent results on functional equations in a single variable, perspectives and open problems[J ]. Aequationes Math, 2001, 61 : 1.
  • 4Kulczycki M, Tabor J. Iterative functional equations in the class of Lipschitz functions[J]. Aequationes Math, 2002, 64:24.
  • 5Jarczyk W. On an equation of linear iteration[J]. Aequationes Math, 1996, 51:303.
  • 6Zhang W N. Discussion on the iterated equation Σi→n= 1λif^i (x) = F(x) [J]. Chin. Sci. Bull, 1987, 32:1444.
  • 7Zhang W N. Discussion on the differentiable solutions of the iterated equation Σi→n= 1λif^i(x) = F (x) [ J ]. Nonlinear Anal,1990, 15:387.
  • 8Zhang W N. Solutions of equivariance for a polynomlal-like iteratlve equationIJ]. Proc. Royal Soc. Edinburgh, 2000,A130:1153.
  • 9Nikodem K. On Jensen's functional equation for set-valued functions[J ]. Radovi Math, 1987, 3:23.
  • 10Nikodem K. Set-valued solutions of the Pexider functional equation[J]. Funkcial. Ekvac, 1988, 31:227.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部