摘要
作者讨论了一类广泛的迭代方程f^n(x)=G(x,f(x),f^2(x),…,f^(h-1)(x)).通过Sch(o|¨)rder变换,迭代方程被转化为辅助方程的形式.在不要求方程中含有f^1的条件下作者给出了局部C^1解的存在性.它的特殊形式就是多项式型迭代方程的首项系数问题.
A general kind of iterative equation f^n(x)=G(x,f(x),f^2(x),..,f^n-1 (x)) is discussed. The equation is reduced to an auxiliary equation by Schroder transformation, and the local C1 solution is given without the hypothesis that f^1 exists. Its special form is the leading coefficient problem of polynomial-like iterative equations.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第1期19-22,共4页
Journal of Sichuan University(Natural Science Edition)