期刊文献+

一类二阶迭代泛函微分方程在共振点附近的解析解的存在性 被引量:1

The existence of analytic solutions of a second-order iterative functional differential equation near resonance
原文传递
导出
摘要 本文在复域C内研究了二阶迭代微分方程x″(x^([r])(z))=(x^([m])(z))~2,r,m≥2;r,m∈N解析解的存在性.通过Schr(o|¨)der变换,即x(z)=y(α^(-1)(z)),作者把这类方程转化为一种不含未知函数迭代的泛函微分方程α~2y″(α^(r+1)z)y′(α~rz)=αy′(α^(r+1)z)y″(α~rz)+(y′(α~rz))~3(y(α~mz))~2,并给出它的局部可逆解析解.本文不仅讨论了双曲型情形|α|>1,0<|α|<1和共振的情形(α是一个单位根),而且还在Brjuno条件下讨论了近共振点情形(即单位根附近). In this paper, the second-order iterate differential equation x"(x^[r](z))=(x^[m](z))^2,r,m≥2;r,m∈N is investigated in the complex field C for the existence of analytic solutions. By reducing the equation with the Schrosder transformation, x(z)=y(ay^-1 (z)), to the another functional differential equation without iteration of the unknown function a62 y^n (a^r+1 z) y' (a' z) =ay' (a^r+1 z) y" (a^r z) + ( y' (a^r z ) )3 (y(a^m z))^2 ,the author obtains existence of its local invertible analytic solutions. Then, the author discusses not only these a given in Schr6der transformation at the hyperbolic case |a|〉1,0〈|a|〈1 and resonance(i, e. , at a root of the unity), but also those a near resonance (i. e. , near a root of the unity) under Brjuno condition.
作者 刘凌霞
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期33-39,共7页 Journal of Sichuan University(Natural Science Edition)
基金 山东省自然科学基金(2006ZRB01066)
关键词 迭代泛函微分方程 解析解 共振 优级数 Brjuno条件 iteration functional differential equation, analytic solution, resonance, majorant series, Brjuno condition.
  • 相关文献

参考文献19

二级参考文献70

  • 1李晓培,邓圣福.DIFFERENTIABILITY FOR THE HIGH DIMENSIONAL POLYNOMIAL-LIKE ITERATIVE EQUATION[J].Acta Mathematica Scientia,2005,25(1):130-136. 被引量:9
  • 2麦结华.关于迭代函数方程f^2(x)=af(x)+bx的通解[J].Journal of Mathematical Research and Exposition,1997,17(1):83-90. 被引量:7
  • 3[1]Abel N H. Oeuvres complétes, Christiana,II:36-39, 1881.
  • 4[2]Bessis D, Marmi S,Turchetti G. Rend.Math. Ser.VII, 1989,9: 645-659.
  • 5[3]Dhombres J G. Publ. Math. Debrecen, 1977, 24(3-4):277-187.
  • 6[4]Dubbey J M. The Mathematical Work of Charles Babbage[M].Cambridge University Press, 1978.
  • 7[5]Jarczyk W. Aequationes Math, 1996,51(1): 303-310.
  • 8[6]Kuczma M, Choczewski B,Ger R.Iterative functional equations[A].Encyclopedia of Math. & Its Applications 32[C]. Cambridge University Press, 1990.
  • 9[7]Mai Jiehua.J.Math.Res.Exp(in Chinese), 1997,17(1): 83-90.
  • 10[8]Mai Jiehua,Liu Xinhe.Sci. China, 2000A43: 897-913.

共引文献13

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部