摘要
本文在复域C内研究了二阶迭代微分方程x″(x^([r])(z))=(x^([m])(z))~2,r,m≥2;r,m∈N解析解的存在性.通过Schr(o|¨)der变换,即x(z)=y(α^(-1)(z)),作者把这类方程转化为一种不含未知函数迭代的泛函微分方程α~2y″(α^(r+1)z)y′(α~rz)=αy′(α^(r+1)z)y″(α~rz)+(y′(α~rz))~3(y(α~mz))~2,并给出它的局部可逆解析解.本文不仅讨论了双曲型情形|α|>1,0<|α|<1和共振的情形(α是一个单位根),而且还在Brjuno条件下讨论了近共振点情形(即单位根附近).
In this paper, the second-order iterate differential equation x"(x^[r](z))=(x^[m](z))^2,r,m≥2;r,m∈N is investigated in the complex field C for the existence of analytic solutions. By reducing the equation with the Schrosder transformation, x(z)=y(ay^-1 (z)), to the another functional differential equation without iteration of the unknown function a62 y^n (a^r+1 z) y' (a' z) =ay' (a^r+1 z) y" (a^r z) + ( y' (a^r z ) )3 (y(a^m z))^2 ,the author obtains existence of its local invertible analytic solutions. Then, the author discusses not only these a given in Schr6der transformation at the hyperbolic case |a|〉1,0〈|a|〈1 and resonance(i, e. , at a root of the unity), but also those a near resonance (i. e. , near a root of the unity) under Brjuno condition.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第1期33-39,共7页
Journal of Sichuan University(Natural Science Edition)
基金
山东省自然科学基金(2006ZRB01066)
关键词
迭代泛函微分方程
解析解
共振
优级数
Brjuno条件
iteration functional differential equation, analytic solution, resonance, majorant series, Brjuno condition.