期刊文献+

基于用户行为的自动任务识别技术研究 被引量:2

Research on automatic task identification based on user behavior
原文传递
导出
摘要 自动任务识别是多任务工作环境下自动任务管理技术的关键,其中对窗口切换历史信息采用Bron-Kerbosky算法来聚类同一任务的窗口,已经被国外研究者采用.然而,该方法仅适用于短时间、较少任务的识别,而对长时间下多个工作任务识别缺乏有效性.本文创新性地提出将窗口切换历史聚类结果与基于焦点时间的窗口重要性相结合形成任务向量,再运用模糊K-Center聚类算法求解任务窗口集合来实现长时间工作环境下多任务识别的方法.实验结果表明,该方法能有效识别长时间工作环境下的多个任务且具有较高的准确率. Automatic task identification is the key function of automated task management system in multi-tasking working environment. Foreign researchers have taken forward methods based on window switch clustering analysis to calculate task window-application sets. But this method is lack of effective recognition of multiple tasks in long working hours. In this paper, for these limitations, we provide a new method that combines results of window switching clustering with focus-time based window impor- tant rate into mission vector, then use uncertain K-Center clustering algorithm for calculating cluster center, to segment automatic multi-task-identification in long working hours. And, some experiment results are presented and they prove this method improved task classification accuracy obviously.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期61-66,共6页 Journal of Sichuan University(Natural Science Edition)
基金 教育部留学回国启动基金项目(20091341-11-3)
关键词 自动任务识别 用户任务建模 聚类 用户行为管理 automatic task identification, user task modeling, clustering, user activity monitoring
  • 相关文献

参考文献10

  • 1Dragunov A,Stumpf S,Dietterich T G,et al.Predicting user tasks,I know what you're doing[C].New York,USA:IEEE Publisheres,2005.
  • 2Bannon L,Cypher A,Greenspan S,et al.Evaluation and analysis of users activity organization[C].New York,USA:IEEE Publiaheres,1983.
  • 3Robertson G,Van Dantzich M,Robbins D,et al.The task gallery:a 3D window manager[C].NewYork,USA:IEEE Publisheres,2000.
  • 4Smith G,Baudisch P,Robertson G,et al.Groupbar:the taskbar evolved[C].NewYork,USA:IEEE Publisheres,2003.
  • 5Oliver N,Smith G,Thakkar C,et al.SWISH:semantic analysis of window titles and switching history[C].New York,USA:IEEE Publisheres,2006.
  • 6Bron C,Kerbosch J.Algorithm 457:finding all cliques of an undirected graph[J].Communications of the ACM,1973,16(9):575.
  • 7Cormode G,McGregor A.Approximation algorithms for clustering uncertain data[C].New York,USA:IEEE Publisheres,2008.
  • 8Robertson G,Horvitz E,Czerwinski M,et al.Scalable fabric:flexible task management[C].New York,USA:IEEE Publisheres,2004.
  • 9MacIntyre B,Mynatt E,Voida S,et al.Support for multitasking and background awareness using interactive peripheral displays[C].NewYork,USA:IEEE Publisheres,2003.
  • 10胡恒滔,龙建忠.基于蚁群算法的模糊C-均值聚类算法在声纹识别中的应用[J].四川大学学报(自然科学版),2007,44(3):543-547. 被引量:10

二级参考文献4

共引文献9

同被引文献22

  • 1Weiser M. The computer for the twenty-first century [J]. Scientific American, 1991, (3):94.
  • 2Yu Y Q, Cai X D. On the instability of slotted ALOHA with multipacket reception capability[J]. IEEE Transactions on Automatic Control, 1988, 33 (7) 640.
  • 3Yu Y Q, Cai X D. On the instability of slotted ALOHA with capture[J]. IEEE Transactions on Wireless Communications, 2006, 5 (2) : 257.
  • 4Molojicic D. Mobile agent application from trend wars[J]. IEEE concurrency,2000, 36(11) : 12.
  • 5Lu J, Du B, Zhu Y, et al. MADFS: the mobile agent-based distributed network file system [C]. Washington, DC, USA: IEEE Computer Society, 2009.
  • 6Guo B J, Lu J, Yue X, et al. A new virtual computing model of area network[C]. U.S. : IEEE,2010.
  • 7张云勇 刘锦德.移动agent技术[M].北京:清华大学出版社,2003..
  • 8Weiser M. The computer for the twenty- first centu- ry [J]. Scientific American, 1991, (3): 94.
  • 9The EPCglobal Network Overview of Design, Bene- fits, &Seeurity [ EB/OL]. (2008-12-05). [ 2012-09- 10 ]. http://www, epeglobaline, org/about/mediaeen- tre/Network Security Final. pdf. 2008.
  • 10Satyanarayanan M, Kozuch M A, Helfrich C J, et al. Towards seamless mobility on pervasive hardware [J]. Pervasive and Mobile Computing, 2005, 1 (2) : 157.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部