期刊文献+

多孔弹性层的刚性边界对扭转表面波传播的影响

Effect of Rigid Boundary on Propagation of Torsional Surface Waves in Porous Elastic Layer
下载PDF
导出
摘要 根据介质的力学性能,正如Cowin及Nunziato一样,导出多孔弹性层覆盖在多孔弹性半空间上时,研究其刚性边界对扭转表面波传播的影响.导出了速度方程并对其结果进行了讨论.发现介质中可能存在两类扭转表面波阵面,而Dey等(Tamkang Journal of Science and Engineering,2003,6(4):241-249.)给出的没有刚性边界面时,存在3类扭转表面波阵面.研究还揭示,多孔弹性层中Love波也可能随同扭转表面波一起存在.值得注意的是,刚性边界面多孔弹性层中Love波的相速度,不同于自由边界面多孔弹性层中的相速度.实际观察到扭转波的色散性,以及速度随着振荡频率的增大而减小. The effect of rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half space was presented using the mechanics of the medium as derived by Cowin and Nunziato.The velocity equation was derived and the results were discussed.It is observed that there may be two torsional surface wave fronts in the medium whereas there exists three wave fronts of torsional surface waves in the absence of rigid boundary plane given by Dey et al(Tamkang Journal of Science and Engineering,2003,6(4): 241-249.).The results also reveals that in the porous layer,the Love wave is also available along with the torsional surface waves.It is remarkable that phase speed of Love wave in a porous layer with rigid surface is different from that in a porous layer with a free surface.The torsional waves are observed to be dispersive in nature,and the velocity decreases as the frequency of oscillation increases.
出处 《应用数学和力学》 CSCD 北大核心 2011年第3期312-323,共12页 Applied Mathematics and Mechanics
基金 印度新德里科学技术部基金的资助(SR/S4/ES-246/2006)
关键词 扭转表面波 LOVE波 刚性边界 多孔 波阵面 torsional surface waves Love wave rigid boundary porous wave front
  • 相关文献

参考文献24

  • 1Ewing W M, Jardetzky W S, Press F. Elastic Waves in Layered Media [M ]. New York: McGraw-Hill, 1957.
  • 2Dey S, Gupta A K, Gupta S. Torsional surface wave in nonhomogeneous and anisotropic medium[J]. Journal of Acoustical Society of America, 1996, 99(5) : 2737-2741.
  • 3Dey S, Dutta D. Torsional wave propagation in an initially stressed cylinder[J]. Proceedings of the Izwlian National Science Academy A, 1992, 58(5 ) : 425-429.
  • 4Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid--I low fre- quency range[J]. Journal of the Acoustical Society of America, 1956, 28(2) : 168-178.
  • 5Biot M A, Willis D G. The Elastic coefficients of the theory of consolidation [ J ]. Journal of Applied Mechanics, 1957, 24:594-501.
  • 6Cowin S C, Nunziato J W. Linear elastic materials with voids[J ]. Journal of Elasticity, 1983, 13(2) : 125-147.
  • 7Goodman M A, Cowin S C. A continuum theory for granular materials [ J ]. Archive for Rational Mechanics and Analysis, 1972,44(4) : 249-266.
  • 8Ciarletta M, Iesan D. Non-Classical Elastic Solids, Longman Scientific and Technical[ M ]. New York: Wiley, 1992.
  • 9Iesan D. Some theorems in the theory of elastic materials with voids[ J]. Journal of Elastic- ity, 1985, 15(2) : 215-224.
  • 10Nunziato J W, Cowin S C. A non-linear theory of elastic materials with voids [ J ]. Archive for Rational Mechanics and Analysis, 1979, 72 ( 2 ) : 175-201.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部