期刊文献+

压缩感知的指静脉图像去噪 被引量:2

Finger vein image denoising based on compressive sensing
下载PDF
导出
摘要 基于压缩感知理论的梯度投影稀疏重建(GPSR)算法对合成指静脉图像进行去噪预处理,运用Canny算子提取指静脉边缘验证了GPSR算法的去噪效果。实验结果表明,与全变分去噪算法(ROF去噪算法)相比,运用GPSR算法可以得到更高信噪比的指静脉图像、更清晰的指静脉边缘轮廓,解决了红外传感器提取指静脉信息时存在的静脉边界模糊、不易分割及提取边缘等问题。 We present a Gradient Projection for Square Reconstruction (GPSR) algorithm for solving bound constrained quadratic programming problem to reduce the noise in synthetic vein images, which are blurred by various noises. This algorithm is based on the compressive sensingtheory. The edge of the vein was extracted by Canny operator to verify the GPSR method. Experiment results show that, compared with the total variation denoising algorithms developed by Rudin, Osher and Fatemi (also called ROF), using the proposed GPSR algorithm can obtain finger vein image with higher Signal to Noise Ratio (SNR), and clearer edge of the vein. So this algorithm can provide more accurate information for vein recognition and extraction.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第2期559-562,共4页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省科技发展计划项目(20090505) 吉林大学基本科研业务费项目(200903077)
关键词 信息处理技术 压缩感知 指静脉图像 图像去噪 梯度投影 information processing compressive sensing finger vein image image denoise gradient projection
  • 相关文献

参考文献11

  • 1International biometric groop. Biometrics market and industry report 2009-2014 [R]. International Bio- metric Group, New York, 2008.
  • 2Candes E. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006.
  • 3Donoho D L, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006,86(3):533- 548.
  • 4Figueiredo M A T,Nowak R D,Wright S J. Gradi- ent projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. Journal of Selected Topics in Signal Process- ing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1 (4) : 586-598.
  • 5Donoho D L. Compressed sensing[J]. IEEE Trans- actions on Information Theory, 2006,5 : 1289-1306.
  • 6Donoho D L. De noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41:613-627.
  • 7Cand~s E, Romberg J,Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans- actions on Information, 2006,52(2) : 489-509.
  • 8Tibshirani R. Regression shrinkage and selection via the lasso[J]. The Journal of the Royal Statistical Society, Series B, 1996,58 ( 1 ) : 267-288.
  • 9Fuchs J J, Multipath time-delay detection and esti- mation[J], IEEE Transactions on Signal Process- ing, 1999,47(1) :237-243.
  • 10Rudin L,Osher S,Fatemi E. Nonlinear total varia- tion based noise removal algorithms[J]. Physiea D, 1992,60(1-4) :259-268.

同被引文献30

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部