期刊文献+

一种双态免疫微粒群算法 被引量:20

A novel binary-state immune particle swarm optimization algorithm
下载PDF
导出
摘要 针对基本微粒群算法的缺陷,提出了一种双态免疫微粒群算法.把微粒群分为捕食与探索两种状态,处于捕食状态的精英粒子采用精英学习策略,指导精英粒子逃离局部极值;处于探索状态的微粒采用探索策略,扩大解的搜索空间,抑制早熟停滞现象.同时引入免疫系统的克隆选择和受体编辑机制,增强群体逃离局部极值及多模优化问题全局寻优能力.实验表明该算法收敛速度快,求解精度高,尤其适合高维及多模态优化问题的求解. Conventional algorithms of particle swarm optimization(PSO) are often trapped in local optima in global optimization. A novel binary-state immune particle swarm optimization algorithm(BIPSO) is proposed. In order to enhance the explorative capacity of the algorithm while avoiding the premature stagnation behavior, the meta-heuristics allow for two behavior states of the particles including Gather State and Explore State during the search. The population is divided into two parts in iterations. Elitist learning strategy is applied to the elitist particle to help the jump out of local optimal regions when the search is identified to be in a gather state. This paper propose a concept of explore strategy to encourage particle in a explore state to escape from the local territory. They exhibit a wide range exploration. Moreover, in order to increase the diversity of the population and improve the search capabilities of PSO algorithm, the mechanism of clonal selection and the mechanism of receptor edition are introduced into this algorithm. Experiments on several benchmarks show that the proposed method is capable of improving the search performance. It is efficient in tackling the high dimensional multimodal optimization problems.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第1期65-72,共8页 Control Theory & Applications
基金 国家自然科学基金重点资助项目(60634020) 湖南省科技计划重点资助项目(2010GK2022)
关键词 微粒群 双态 精英学习 人工免疫系统:多模态函数 particle swarm optimization(PSO) binary-state elitist learning artificial immune system(AIS) multimodalfunction optimization
  • 相关文献

参考文献17

  • 1EBERHART R,KENNEDY J A.A new optimizer using particle swarmtheory[C] //Proceeding of International Symposium on Micromachine and Human Science.Nagoya,Japan:IEEE,1995:39-43.
  • 2HO S Y,LIN H S,LIAUH W H,et al.OPSO:Orthogonal particle swarm optimization and its application to task assignment problems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part A:System and Humans,2008,38(2):288-298.
  • 3RATNAWEERA A,HALGAMUGE S K,WWATSON H C.Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
  • 4EBERHART R C,SHI Y H.Guest editorial-special issue particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):201-203.
  • 5倪庆剑,张志政,王蓁蓁,邢汉承.一种基于可变多簇结构的动态概率粒子群优化算法[J].软件学报,2009,20(2):339-349. 被引量:36
  • 6CHEN Y P,PENG W C,ANDJIAN M C.Particle swarm optimization withrecombination and dynamic linkage discovery[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2007,37(6):1460-1470.
  • 7ANDREWS P S.An investigation into mutation operators for partieleswarm optimization[C] //Proceeding of IEEE Congress on Evolutionary Computation.Vancouver,BC,Canada,IEEE,2006:1044-1051.
  • 8LIANG J J,SUGANTHAN P N.Dynamic multi-swarm particle swarm optimizer with local search[C] //Proceeding of IEEE Congress on Evolutionary Computation.Singapore,IEEE,2005,1:522-528.
  • 9LIANG J J,QIN A K,SUGANTHAN p N,et al.Comprehensivelearning particle swarm optimizer for global optimization of multimodalfunctions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
  • 10ZHAN Z H,ZHANG J,LI Y,et al.Adaptive particle swarm optimization[J].IEEE Transactions on Systems.Man,and Cybernetics,Part B:Cybernetics,2009,39(6):1362-1380.

二级参考文献34

共引文献156

同被引文献285

引证文献20

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部