摘要
运用锥上的不动点定理研究一类非线性二阶常微分方程无穷多点边值问题u″(t)+f(t,u)=0,t∈(0,1),u′(0)=∑∞αiu(ξi),u′(1)+∑∞βiu(ξi)=0,i=1i=1正解的存在性,其中αi,βi∈(0,+∞),i=1,2,…,n,…,0<ξ1<ξ2<…<ξn<…<1为给定的常数,f:[0,1]×[0,+∞)→[0,+∞)连续.
In this paper,we investigate the existence of positive solutions to the following ∞-point boundary value problemu″(t)+f(t,u)=0,t∈(0,1), u′(0)=∑∞ i=1αiu(ξi),u′(1)+∑∞ i=1βiu(ξi)=0,where αi,βi are positive parameters,αi,βi∈(0,+∞),i=1,2,…,n,…,0ξ1ξ2…ξn…1,and f:×[0,+∞)→[0,+∞) is continuous.Based upon a fixed point theorem in cones,we show that the above problem has at least one positive solution if the nonlinearity f is either superlinear or sublinear.
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2011年第1期88-92,共5页
Journal of Wuhan University:Natural Science Edition
基金
国家自然科学基金资助项目(10961017)
关键词
无穷多点边值问题
正解
锥
不动点
∞-point boundary value problem
positive solutions
cone
fixed point