期刊文献+

一类二阶常微分方程无穷多点边值问题正解的存在性

Existence of Positive Solutions for Second Order ∞-Point Boundary Value Problem
原文传递
导出
摘要 运用锥上的不动点定理研究一类非线性二阶常微分方程无穷多点边值问题u″(t)+f(t,u)=0,t∈(0,1),u′(0)=∑∞αiu(ξi),u′(1)+∑∞βiu(ξi)=0,i=1i=1正解的存在性,其中αi,βi∈(0,+∞),i=1,2,…,n,…,0<ξ1<ξ2<…<ξn<…<1为给定的常数,f:[0,1]×[0,+∞)→[0,+∞)连续. In this paper,we investigate the existence of positive solutions to the following ∞-point boundary value problemu″(t)+f(t,u)=0,t∈(0,1), u′(0)=∑∞ i=1αiu(ξi),u′(1)+∑∞ i=1βiu(ξi)=0,where αi,βi are positive parameters,αi,βi∈(0,+∞),i=1,2,…,n,…,0ξ1ξ2…ξn…1,and f:×[0,+∞)→[0,+∞) is continuous.Based upon a fixed point theorem in cones,we show that the above problem has at least one positive solution if the nonlinearity f is either superlinear or sublinear.
作者 范虹霞
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2011年第1期88-92,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(10961017)
关键词 无穷多点边值问题 正解 不动点 ∞-point boundary value problem positive solutions cone fixed point
  • 相关文献

参考文献8

  • 1II'in V A, Moiseev E I. Nonlocal boundary value problem of the first kind for a Sturm-Liouvill operator in its differential and difference aspects[J]. Differential Equations, 1987,23(7) :803-810.
  • 2II'in V A, Moiseev E I. Nonloeal boundary value problem of the first kind for a Sturm Liouvill operator [J]. Differential Equations, 1987,23(8) 979-987.
  • 3Gupta C P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation[J]. J Math Anal Appl, 1992, 168:540-551.
  • 4Fan Hongxia,Ma Ruyun. Loss of positivity in a non linear second order ordinary differential equations[J]. Nonlinear Anal, 2009,71 : 437-444.
  • 5Infante G, Webb J R L. Three-point boundary value problems with solutions that change sign[J]. J Integral Equations Appl , 2003,15 : 37-57.
  • 6Wang Haiyan. On the existence of positive solutions for semilinear elliptic equations in the annulus[J]. J Differential Equations, 1994,109 : 1-9.
  • 7Ma Ruyun. Existence of positive solutions for second order m-point boundary value problems[J]. Ann Polon Math, 2002,79 : 265-276.
  • 8马如云,范虹霞,韩晓玲.二阶常微分方程无穷多点边值问题的正解[J].数学物理学报(A辑),2009,29(3):699-706. 被引量:13

二级参考文献7

  • 1II'in V A, Moiseev E I. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differential Equations, 1987, 23(7): 803-810.
  • 2II'in V A, Moiseev E I. Nontocal boundary value problem of the first kind for a Sturm-Liouville operator. Differential Equations, 1987, 23(8): 979 -987.
  • 3Gupta C P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J Math Anal Appl, 1992, 168:540-551.
  • 4Ma R. Positive solutions of a nonlinear m-point boundary value problem. Computers and Mathematics with Applications, 2001, 42:755-765.
  • 5Ma R. Positive solutions of a nonlinear three-point boundary value problem. Electron J Differential Equations, 1999, 34:1- 8.
  • 6Zhang G, Sun J. Positive solutions of m-point boundary value problem. J Math Anal Appl, 2004, 291(2): 404-418.
  • 7Dong S, Ge W. Positive solutions of m-point boundary value problem with sign change nonlinearities. Computers and Mathematics with Applications, 2005, 49:589-598.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部