期刊文献+

Temperature and thermodynamic geometry of the Kerr-Sen black hole

Temperature and thermodynamic geometry of the Kerr-Sen black hole
下载PDF
导出
摘要 This paper studies the thermodynamic properties of the Kerr-Sen black hole from the viewpoint of geometry. It calculates the temperature and heat capacity of the black hole, Weinhold metric and Ruppeiner metric are also obtained respectively. It finds that they are both curved and the curvature scalar of Weinhold curvature implies no information about the phase transition while the Ruppeiner one does. But they both carry no information about the second-order phase transition point reproduced from the capacity. Besides, the Legendre invariant metric of the Kerr-Sen black hole has been discussed and its scalar curvature gives the information about the second-order phase transition point. This paper studies the thermodynamic properties of the Kerr-Sen black hole from the viewpoint of geometry. It calculates the temperature and heat capacity of the black hole, Weinhold metric and Ruppeiner metric are also obtained respectively. It finds that they are both curved and the curvature scalar of Weinhold curvature implies no information about the phase transition while the Ruppeiner one does. But they both carry no information about the second-order phase transition point reproduced from the capacity. Besides, the Legendre invariant metric of the Kerr-Sen black hole has been discussed and its scalar curvature gives the information about the second-order phase transition point.
作者 兰明建
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期88-92,共5页 中国物理B(英文版)
基金 supported by the Scientific and Technological Foundation of Chongqing Municipal Education Commission of China (GrantNos. KJ 090731 and KJ100706)
关键词 black hole thermodynamic geometry phase transition black hole, thermodynamic geometry, phase transition
  • 相关文献

参考文献32

  • 1Bekenstein J D 1972 Lett. Nuovo Cimento 4 737.
  • 2Bekenstein J D 1973 Phys. Rev. D 7 2333.
  • 3Hawking S W 1975 Commun. Math. Phys. 43 199.
  • 4Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042.
  • 5Zhang J Y and Zhao Z 2006 Acta Phys. Sin. 55 3796 (in Chinese).
  • 6Liu W B 2007 Acta Phys. Sin. 56 6164 (in Chinese).
  • 7Yang S Z and Chen D Y 2008 Chin. Phys. B 17 817.
  • 8Han Y W, Bao Z Q and Hong Y 2009 Chin. Phys. B 18 62.
  • 9Weinhold F 1975 J. Chem. Phys. 63 2479.
  • 10Ruppeiner G 1979 Phys. Rev. A 20 1608.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部