期刊文献+

Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys 被引量:3

Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys
下载PDF
导出
摘要 This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Nis0-xCuxMn31Ga19 (x=2 10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature. This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Nis0-xCuxMn31Ga19 (x=2 10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期527-531,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 50925101) Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50921003) the Fundamental Research Funds for the Central Universities
关键词 shape memory alloys martensitic phase transformation NiCuMnGa shape memory alloys, martensitic phase transformation, NiCuMnGa
  • 相关文献

参考文献22

  • 1Ullakko K, Huang J K, Kantner C, O'Handley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966.
  • 2Meng F B, Guo H J, Liu G D, Liu H Y, Dai X F, Luo H Z, Li Y X, Chen J L and Wu G H 2009 Chin. Phys. B 18 3031.
  • 3Murray S J, Marioni M, Allen S M, O'Handley R C and Lograsso T A 2000 Appl. Phys. Lett. 77 886.
  • 4Sozinov A, Likhachev A A, Lanska N and Ullakko K 2002 Appl. Phys. Lett. 80 1746.
  • 5Cui Y T, You S Q, Wu L, Wu G H 2009 Acta Phys. Ma Y, Chen J L, Pan F S and Sin. 58 8596 (in Chinese).
  • 6Chmielus M, Zhang X X, Witherspoon C, Dunand D C and Mfillner P 2009 Nature Mater. 8 863.
  • 7Kainuma R, Imano Y, Ira W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature (London) 439 957.
  • 8Cherechukin A A, Dikshtein I E, Ermakov D I, Glebov A V, Koledov V V, Kosolapov D A, Shavrov V G, Tulaikova A A, Krasnoperov E P and Takagi T 2001 Phys. Lett. A 291 175.
  • 9Wan J F, Fei Y Q and Wang J N 2006 Aeta Phys. Sin. 55 2444 (in Chinese).
  • 10Liu Z H, Chen J L, Hu H N, Zhang M, Dai X F, Zhu Z Y, Liu G D, Wu G H, Meng F B and Li Y X 2004 Scripts Mater. 51 1011.

同被引文献2

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部