期刊文献+

一类弱奇异边值问题的大范围收敛算法 被引量:1

A Kind of Large-range Convergence Algorithm for Weakly Regular Singular Boundary Value Problems
下载PDF
导出
摘要 该文研究如下的弱奇异边值问题:(p(x)y')'=f(x,y),0<x≤1,带有初值条件为p(x)=x^(b_0)g(x),0≤b_0<1,边值条件为y(0)=A,αy(1)+βy'(1)=γ或y'(0)=0,αy(1)+βy'(1)=γ(R.K.Pandey和Arvind K.Singh给出了一种求解此问题的二阶有限差分方法.在再生核空间中讨论方程解的存在性,给出一种新的迭代算法,这种迭代算法是大范围收敛的.给出数值算例并与R.K.Pandey和Arvind K.Singh给出的方法进行比较说明该文方法的有效性. In this paper,the weakly regular singular boundary value problem(p(x)y')' = f(x,y),0x≤1,with p(x) = x^(b_0)g(x),0≤b_01,and the boundary conditions y(0) = A,αy(1) +βy'(1) =γ,or y'(0) = 0,αy(1) +βy'(1) =γ(R.K.Pandey and Arvind K.Singh presented the second order finite difference methods is considered.The existence of the solution and a new iterative algorithm which is large-range convergent are established for the problems in reproducing kernel space.Illustrative examples are included to demonstrate the validity and applicability of the technique through comparing the method with the method given by R.K.Pandey and Arvind K.Singh.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第1期142-153,共12页 Acta Mathematica Scientia
基金 黑龙江省自然科学基金(A201015) 黑龙江省教育厅科学技术研究项目(11541323)资助
关键词 奇异边值问题 迭代方法 解的存在性 再生核空间 Singular boundary value problem Iterative method Existence of solution Reproducing kernel space
  • 相关文献

参考文献10

  • 1Pandey R K,Singh Arvind K.On the convergence of finite difference methods for weakly regular singular boundary value problems.J Comput Appl Math,2007,205:469-478.
  • 2Tariq Aziz,Manoj Kumar.A fourth-order finite difference method based on non-uniform mesh for a class of singular two-point boundary value problems.J Comput Appl Math,2001,136:337-342.
  • 3Manoj Kumar.A difference method for singular two-point boundary value problems.Appl Math Comput,2003,146:879-884.
  • 4Manoj Kumar,Tariq Aziz.A uniform mesh finite difference method for a class of singular two-point boundary value problems.Appl Math Comput,2006,180:173-177.
  • 5Chawla M M,Katti C P.Finite difference methods and their convergence for a class of singular two point boundary value problems.Numer Math,1982,39:341-350.
  • 6Kumar M,Aziz T.A non uniform mesh finite difference method and its convergence for a class of singular two point boundary value problems.Internat J Comput Math,2004,81(2):1507-1512.
  • 7Pandey R K.On a class of weakly regular singular two point boundary value problems Ⅰ.Nonlinear Anal Theory Methods Appl,1996,27(1):1-12.
  • 8Pandey R K.On a class of weakly regular singular two point boundary value problems Ⅱ.J Differential Equations,1996,127:110-123.
  • 9Sakai M,Usmani R A.Non polynomial spline and weakly singular two-point boundary value problems.BIT,1988,28:867-876.
  • 10Li Chunli,Cui Minggen.The exact solution for solving a class of nonlinear operator equation in the reproducing kernel space.Appl Math Comput,2003,143(2/3):393-399.

同被引文献30

  • 1Wendland H. Scattered Data Approximation. Cambridge: Cambridge University Press, 2005.
  • 2Buhmann M D. Radial Basis Functions: Theory and Implementations. Cambridge: Cambridge University Press, 2003.
  • 3Cucker F, Zhou D X. Learning Theory: An Approximation Theory Viewpoint. Cambridge: Cambridge University Press, 2007.
  • 4Ball K. Eigenvalues of Euclidean distance matrices. J Approx Theory 1992, 68(1): 74-82.
  • 5Narcowich F J, Sivakumar N, Ward J D. Stability results for scattered data interpolation on Euclidean spheres. Adv Comput Math, 1998, 8(3): 137-168.
  • 6Narcowich F J, Sivakumar N, Ward J D. On condition numbers associated with radial function interpola- tion. J Math Anal and Appl, 1994, 186(3): 457 -485.
  • 7Narcowich F J, Ward J D. Norms estimates for the inverses of a general class of scattered data radial function interpolation matrices. J Approx Theory, 1992, 69(1): 84- 109.
  • 8Jetter K, St5ckler J, Ward J D. Error estimates for scattered data interpolation on spheres. Math Comp, 1999, 68(226): 733- 747.
  • 9Schaback R. Lower bounds for norms of inverses interpolation matrices for radial basis functions. J Approx Theory, 1994, 79(2): 287-306.
  • 10Zhou D X. The covering number in learning theory. J Complexity, 2002, 18(3): 739-767.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部