摘要
该文研究如下的弱奇异边值问题:(p(x)y')'=f(x,y),0<x≤1,带有初值条件为p(x)=x^(b_0)g(x),0≤b_0<1,边值条件为y(0)=A,αy(1)+βy'(1)=γ或y'(0)=0,αy(1)+βy'(1)=γ(R.K.Pandey和Arvind K.Singh给出了一种求解此问题的二阶有限差分方法.在再生核空间中讨论方程解的存在性,给出一种新的迭代算法,这种迭代算法是大范围收敛的.给出数值算例并与R.K.Pandey和Arvind K.Singh给出的方法进行比较说明该文方法的有效性.
In this paper,the weakly regular singular boundary value problem(p(x)y')' = f(x,y),0x≤1,with p(x) = x^(b_0)g(x),0≤b_01,and the boundary conditions y(0) = A,αy(1) +βy'(1) =γ,or y'(0) = 0,αy(1) +βy'(1) =γ(R.K.Pandey and Arvind K.Singh presented the second order finite difference methods is considered.The existence of the solution and a new iterative algorithm which is large-range convergent are established for the problems in reproducing kernel space.Illustrative examples are included to demonstrate the validity and applicability of the technique through comparing the method with the method given by R.K.Pandey and Arvind K.Singh.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2011年第1期142-153,共12页
Acta Mathematica Scientia
基金
黑龙江省自然科学基金(A201015)
黑龙江省教育厅科学技术研究项目(11541323)资助
关键词
奇异边值问题
迭代方法
解的存在性
再生核空间
Singular boundary value problem
Iterative method
Existence of solution
Reproducing kernel space